期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
应用于固体氧化物电池异质电极性能和耐久度提升的数据驱动P2PF框架 被引量:1
1
作者 汪洋 武承如 +7 位作者 赵思原 郭曾嘉 韩敏芳 赵天寿 祖炳锋 杜青 倪萌 焦魁 《Science Bulletin》 SCIE EI CAS CSCD 2023年第5期516-527,M0004,共13页
固体氧化物电池将在未来可再生能源储存转换系统中占据重要位置.但SOCs受制于低耐久度的影响,目前仍需在新材料开发和工程设计方面取得进一步的突破以实现商业化.这项研究报道了一个数据驱动的粉体-能量框架(Powder-to-power framework,... 固体氧化物电池将在未来可再生能源储存转换系统中占据重要位置.但SOCs受制于低耐久度的影响,目前仍需在新材料开发和工程设计方面取得进一步的突破以实现商业化.这项研究报道了一个数据驱动的粉体-能量框架(Powder-to-power framework,P2PF),通过实现从制备到长时运行的异质电极形貌演化数字化,实现了对于整个生命周期的性能预测.首先通过参数分析阐明了微结构参数对于燃料电极长期性能的内在影响机制,发现合理控制离子导电相的体积分数不仅可以有效抑制镍粗化,还是减少镍迁移引起的欧姆损失增加的关键.电极初始性能和性能衰减率是多参数耦合作用的结果.所构建代理模型被应用于多目标遗传算法以提出简单可行的耐久度优化策略.数据驱动的粉体-能量框架确定了满足不同最大运行时长要求的最佳电极制备参数,并将镍基电极的降解率从基本工况下2.132%kh^(-1)降低到0.703%kh^(-1)(最大运行时长大于50000 h). 展开更多
关键词 数据驱动 转换系统 固体氧化物 P2P 多目标遗传算法 新材料开发 电极性能 离子导电
原文传递
Degradation prediction of proton exchange membrane fuel cell stack using semi-empirical and data-driven methods 被引量:3
2
作者 Yupeng Wang Kangcheng Wu +7 位作者 Honghui Zhao Jincheng Li Xia Sheng Yan Yin Qing Du bingfeng zu Linghai Han Kui Jiao 《Energy and AI》 2023年第1期1-11,共11页
Degradation prediction of proton exchange membrane fuel cell(PEMFC)stack is of great significance for improving the rest useful life.In this study,a PEMFC system including a stack of 300 cells and subsystems has been ... Degradation prediction of proton exchange membrane fuel cell(PEMFC)stack is of great significance for improving the rest useful life.In this study,a PEMFC system including a stack of 300 cells and subsystems has been tested under semi-steady operations for about 931 h.Then,two different models are respectively established based on semi-empirical method and data-driven method to investigate the degradation of stack performance.It is found that the root mean square error(RMSE)of the semi-empirical model in predicting the stack voltage is around 1.0 V,while the predicted voltage has no local dynamic characteristics,which can only reflect the overall degradation trend of stack performance.The RMSE of short-term voltage degradation predicted by the DDM can be less than 1.0 V,and the predicted voltage has accurate local variation characteristics.However,for the long-term prediction,the error will accumulate with the iterations and the deviation of the predicted voltage begins to fluctuate gradually,and the RMSE for the long-term predictions can increase to 1.63 V.Based on the above characteristics of the two models,a hybrid prediction model is further developed.The prediction results of the semi-empirical model are used to modify the input of the data-driven model,which can effectively improve the oscillation of prediction results of the data-driven model during the long-term degradation.It is found that the hybrid model has good error distribution(RSEM=0.8144 V,R2=0.8258)and local performance dynamic characteristics which can be used to predict the process of long-term stack performance degradation. 展开更多
关键词 Proton exchange membrane fuel cell system Data-driven method Semi-empirical equation Degradation experiments
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部