In this article,two results concerning the periodic points and normality of meromorphic functions are obtained:(i)the exact lower bound for the numbers of periodic points of rational functions with multiple fixed poin...In this article,two results concerning the periodic points and normality of meromorphic functions are obtained:(i)the exact lower bound for the numbers of periodic points of rational functions with multiple fixed points and zeros is proven by let ting R(z)be a nonpolynomial rational function,and if all zeros and poles of R(z)—z are multiple,then Rk(z)has at least k+1 fixed points in the complex plane for each integer k≥2;(ii)a complete solution to the problem of normality of meromorphic functions with periodic points is given by let ting F be a family of meromorphic functions in a domain D,and let ting k≥2 be a positive integer.If,for each f∈F,all zeros and poles of f(z)-z are multiple,and its iteration fk has at most k distinct fixed points in D,then F is normal in D.Examples show that all of the conditions are the best possible.展开更多
Let f be a nonconstant meromorphic function, c ∈ C, and let ■be a meromorphic function. If f(z) and P(z, f(z)) share the sets {a(z),-a(z)},{0} CM almost and share {∞} IM almost, where P(z, f(z)) is defined as(1.1),...Let f be a nonconstant meromorphic function, c ∈ C, and let ■be a meromorphic function. If f(z) and P(z, f(z)) share the sets {a(z),-a(z)},{0} CM almost and share {∞} IM almost, where P(z, f(z)) is defined as(1.1), then f(z) ≡±P(z, f(z)) or f(z)P(z, f(z)) ≡±a^2(z). This extends the results due to Chen and Chen(2013), Liu(2009) and Yi(1987).展开更多
In 1992,Yang Lo posed the following problem:let F be a family of entire functions,let D be a domain in C,and let k 2 be a positive integer.If,for every f∈F,both f and its iteration f^khave no fixed points in D,is F n...In 1992,Yang Lo posed the following problem:let F be a family of entire functions,let D be a domain in C,and let k 2 be a positive integer.If,for every f∈F,both f and its iteration f^khave no fixed points in D,is F normal in D?This problem was solved by Ess′en and Wu in 1998,and then solved for meromorphic functions by Chang and Fang in 2005.In this paper,we study the problem in which f and f^(k ) have fixed points.We give positive answers for holomorphic and meromorphic functions.(I)Let F be a family of holomorphic functions in a domain D and let k 2 be a positive integer.If,for each f∈F,all zeros of f(z)-z are multiple and f^khas at most k distinct fixed points in D,then F is normal in D.Examples show that the conditions"all zeros of f(z)-z are multiple"and"f^k having at most k distinct fixed points in D"are the best possible.(II)Let F be a family of meromorphic functions in a domain D,and let k 2 and l be two positive integers satisfying l 4 for k=2 and l 3 for k 3.If,for each f∈F,all zeros of f(z)-z have a multiplicity at least l and f^khas at most one fixed point in D,then F is normal in D.Examples show that the conditions"l 3for k 3"and"f^k having at most one fixed point in D"are the best possible.展开更多
基金supported by the NNSF of China(11901119,11701188)The third author was supported by the NNSF of China(11688101).
文摘In this article,two results concerning the periodic points and normality of meromorphic functions are obtained:(i)the exact lower bound for the numbers of periodic points of rational functions with multiple fixed points and zeros is proven by let ting R(z)be a nonpolynomial rational function,and if all zeros and poles of R(z)—z are multiple,then Rk(z)has at least k+1 fixed points in the complex plane for each integer k≥2;(ii)a complete solution to the problem of normality of meromorphic functions with periodic points is given by let ting F be a family of meromorphic functions in a domain D,and let ting k≥2 be a positive integer.If,for each f∈F,all zeros and poles of f(z)-z are multiple,and its iteration fk has at most k distinct fixed points in D,then F is normal in D.Examples show that all of the conditions are the best possible.
基金supported by the National Natural Science Foundation of China(No.11701188)
文摘Let f be a nonconstant meromorphic function, c ∈ C, and let ■be a meromorphic function. If f(z) and P(z, f(z)) share the sets {a(z),-a(z)},{0} CM almost and share {∞} IM almost, where P(z, f(z)) is defined as(1.1), then f(z) ≡±P(z, f(z)) or f(z)P(z, f(z)) ≡±a^2(z). This extends the results due to Chen and Chen(2013), Liu(2009) and Yi(1987).
基金supported by National Natural Science Foundation of China (Grant Nos. 11371149 and 11231009)the Graduate Student Overseas Study Program from South China Agricultural University (Grant No. 2017LHPY003)
文摘In 1992,Yang Lo posed the following problem:let F be a family of entire functions,let D be a domain in C,and let k 2 be a positive integer.If,for every f∈F,both f and its iteration f^khave no fixed points in D,is F normal in D?This problem was solved by Ess′en and Wu in 1998,and then solved for meromorphic functions by Chang and Fang in 2005.In this paper,we study the problem in which f and f^(k ) have fixed points.We give positive answers for holomorphic and meromorphic functions.(I)Let F be a family of holomorphic functions in a domain D and let k 2 be a positive integer.If,for each f∈F,all zeros of f(z)-z are multiple and f^khas at most k distinct fixed points in D,then F is normal in D.Examples show that the conditions"all zeros of f(z)-z are multiple"and"f^k having at most k distinct fixed points in D"are the best possible.(II)Let F be a family of meromorphic functions in a domain D,and let k 2 and l be two positive integers satisfying l 4 for k=2 and l 3 for k 3.If,for each f∈F,all zeros of f(z)-z have a multiplicity at least l and f^khas at most one fixed point in D,then F is normal in D.Examples show that the conditions"l 3for k 3"and"f^k having at most one fixed point in D"are the best possible.