期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Semantic knowledge graph as a companion for catalyst recommendation 被引量:1
1
作者 Zhiying Zhang Shengming Ma +5 位作者 Shisheng Zheng Zhiwei Nie bingxu wang Kai Lei Shunning Li Feng Pan 《National Science Open》 2024年第2期46-55,共10页
Our ability to perceive the correlation of different substances in the world is one of the key aspects of human intelligence.The passing of this faculty to artificial intelligence(AI)represents arguably one of the lon... Our ability to perceive the correlation of different substances in the world is one of the key aspects of human intelligence.The passing of this faculty to artificial intelligence(AI)represents arguably one of the long-standing challenges in the application of AI to scientific problems.To meet this challenge in the burgeoning field of AI for chemistry,we may adopt the paradigm of knowledge graph.Herein,focusing on catalytic chemical reactions,we have developed a semantic knowledge graph framework based on both structured and unstructured data,the latter of which are extracted from the text of 220,000articles on catalysts for organic molecules.The framework captures the latent knowledge of reactant-catalyst-product relationships and can therefore provide accurate recommendation on potential catalysts for targeted reaction,which especially facilitates the research involving large molecules.This study presents a viable pathway towards the implementation of literature-based data management in a catalyst recommendation platform. 展开更多
关键词 knowledge graph text mining CATALYSTS organic molecules natural language processing
原文传递
ROSA机器人治疗疑似脑梗死的隐源性脑脓肿一例
2
作者 杨栋栋 李娜 +2 位作者 王炳旭 郑秋盟 陈卓铭 《中华脑科疾病与康复杂志(电子版)》 2023年第2期124-126,共3页
脑脓肿是一类中枢神经系统的感染性疾病,多由化脓性细菌引起,具有致死的风险。根据感染途径的不同,可分为邻近组织的感染、血源性感染、颅脑外伤或颅脑术后感染和隐源性感染。隐源性脑脓肿是指隐源性感染引起的脑脓肿,具有起病隐匿的特... 脑脓肿是一类中枢神经系统的感染性疾病,多由化脓性细菌引起,具有致死的风险。根据感染途径的不同,可分为邻近组织的感染、血源性感染、颅脑外伤或颅脑术后感染和隐源性感染。隐源性脑脓肿是指隐源性感染引起的脑脓肿,具有起病隐匿的特点,无明显感染源,缺少发热、头痛或局灶性神经功能障碍等典型临床症状,早期的影像学表现与脑梗死或颅内肿瘤相似,容易误诊[1]。脑脓肿的主要治疗方式为单纯药物治疗和药物联合手术治疗,具体治疗方式的选择还需结合脓肿大小、数量、对手术的耐受性等多方面因素[2]。颅脑手术在外科领域对精准度的要求更高,ROSA机器人正是在这种背景下诞生的。ROSA是法国Medtech公司生产的一种无框架立体定向手术机器人,具有精准度高、手术安全性好、创伤小和低感染率等优点[3]。本文报道了1例由ROSA机器人辅助的立体定向抽吸术治疗的脑脓肿患者的诊疗过程,并结合ROSA机器人的治疗优势,以期为临床治疗提供参考。 展开更多
关键词 隐源性脑脓肿 ROSA机器人 脑梗死 治疗
原文传递
Load Feedback-Based Resource Scheduling and Dynamic Migration-Based Data Locality for Virtual Hadoop Clusters in OpenStack-Based Clouds 被引量:4
3
作者 Dan Tao Zhaowen Lin bingxu wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第2期149-159,共11页
With cloud computing technology becoming more mature, it is essential to combine the big data processing tool Hadoop with the Infrastructure as a Service(Iaa S) cloud platform. In this study, we first propose a new ... With cloud computing technology becoming more mature, it is essential to combine the big data processing tool Hadoop with the Infrastructure as a Service(Iaa S) cloud platform. In this study, we first propose a new Dynamic Hadoop Cluster on Iaa S(DHCI) architecture, which includes four key modules: monitoring,scheduling, Virtual Machine(VM) management, and VM migration modules. The load of both physical hosts and VMs is collected by the monitoring module and can be used to design resource scheduling and data locality solutions. Second, we present a simple load feedback-based resource scheduling scheme. The resource allocation can be avoided on overburdened physical hosts or the strong scalability of virtual cluster can be achieved by fluctuating the number of VMs. To improve the flexibility, we adopt the separated deployment of the computation and storage VMs in the DHCI architecture, which negatively impacts the data locality. Third, we reuse the method of VM migration and propose a dynamic migration-based data locality scheme using parallel computing entropy. We migrate the computation nodes to different host(s) or rack(s) where the corresponding storage nodes are deployed to satisfy the requirement of data locality. We evaluate our solutions in a realistic scenario based on Open Stack.Substantial experimental results demonstrate the effectiveness of our solutions that contribute to balance the workload and performance improvement, even under heavy-loaded cloud system conditions. 展开更多
关键词 Hadoop resource scheduling data locality Infrastructure as a Service(Iaas) OpenStack
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部