期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Simulation of aggregation effects on co-fired biomass-coal ash in an electrostatic precipitator 被引量:1
1
作者 Jianyi Lu Zhe Yang +2 位作者 bingyi xu Zhiyong Zhou Chenxi Sun 《Particuology》 SCIE EI CAS CSCD 2020年第3期120-126,共7页
Aggregation of fine ash into larger particles benefits fly ash removal in an electrostatic precipitator.Thermal aggregation,turbulent aggregation,and electrical aggregation of fine ash (derived from co-firing of bioma... Aggregation of fine ash into larger particles benefits fly ash removal in an electrostatic precipitator.Thermal aggregation,turbulent aggregation,and electrical aggregation of fine ash (derived from co-firing of biomass fuel and anthracite coal) was simulated under different conditions in an electrostatic precipitator.A population balance model and user-defined function in Fluent were assumed to obtain aggregation kernel functions and calculate the aggregation effects on the co-combusted particles.The results show that electrical aggregation had an obvious effect on both micron-and submicron-sized particles.For submicron particles,the effect of thermal aggregation is about ten times greater than turbulent aggregation.Meanwhile,for micron-sized particles,turbulent aggregation is about seven times greater than thermal aggregation.Therefore,particle aggregation in the electrostatic precipitator mainly occurs because of electrical aggregation,supplemented by thermal aggregation and turbulent aggregation.When the flow velocity is 1.0 m/s,particle volume fraction is 1.4%,and biomass co-firing ratio is 10%,the effects of all three aggregation processes on ash particles are optimized. 展开更多
关键词 CO-COMBUSTION AGGREGATION Population balance model(PBM) Dust removal Electrostatic precipitator(ESP)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部