Gaseous promotors have readily been adopted during the direct synthesis of graphene over insulators to enhance the growth quality and/or boost the growth rate.The understanding of the real functions of carbon-containi...Gaseous promotors have readily been adopted during the direct synthesis of graphene over insulators to enhance the growth quality and/or boost the growth rate.The understanding of the real functions of carbon-containing promotors has still remained elusive.In this study,we identify the critical roles of a representative CO_(2)promotor played in the direct growth of graphene.The comparative experimental trials validate CO_(2)as an effective modulator to decrease graphene nucleation density,improve growth kinetics,mitigate adlayer formation.The first-principles calculations illustrate that the generation of gas-phase OH species in CO_(2)-assisted system helps decrease the energy barriers of CH4 decomposition and carbon attachment to the growth front,which might be the key factor to allow high-quality direct growth.Such a CO_(2)-promoted strategy enables the conformal coating of graphene film over curved insulators,where the sheet resistance of grown graphene on quartz reaches as low as 1.26 kΩ·sq^(−1)at an optical transmittance of~95.8%.The fabricated endoscope lens based on our conformal graphene harvests an apoptosis of 82.8%for noninvasive thermal therapy.The work presented here is expected to motivate further investigations in the controllable growth of high-quality graphene on insulating substrates.展开更多
Growing high quality graphene films directly on glass by chemical vapor deposition(CVD)meets a growing demand for constructing high-performance electronic and optoelectronic devices.However,the graphene synthesized by...Growing high quality graphene films directly on glass by chemical vapor deposition(CVD)meets a growing demand for constructing high-performance electronic and optoelectronic devices.However,the graphene synthesized by prevailing methodologies is normally of polycrystalline nature with high nucleation density and limited domain size,which significantly handicaps its overall properties and device performances.Herein,we report an oxygen-assisted CVD strategy to allow the direct synthesis of 6-inch-scale graphene glass harvesting markedly increased graphene domain size(from 0.2 to 1.8μm).Significantly,as-produced graphene glass attains record high electrical conductivity(realizing a sheet resistance of 900Ω·sq^(-1)at a visible-light transmittance of 92%)amongst the state-of-the-art counterparts,readily serving as transparent electrodes for fabricating high-performance optical filter devices.This work might open a new avenue for the scalable production and application of emerging graphene glass materials with high quality and low cost.展开更多
Direct growth of large area uniform graphene on functional insulating materials is essential for engineering versatile applications of graphene. However, the existing synthesis approaches can hardly avoid the generati...Direct growth of large area uniform graphene on functional insulating materials is essential for engineering versatile applications of graphene. However, the existing synthesis approaches can hardly avoid the generation of non-uniform multilayer graphene along the gas flow direction, affording huge challenges for further scaling up. Herein, by exploiting the molten state of soda-lime glass, we have accomplished the direct growth of large area uniform (up to 30 cm × 6 cm) graphene via a facile chemical vapor deposition route on low cost soda-lime glass. The use of molten glass eliminates the chemically active sites (surface corrugations, scratches, defects), and improves the mobility of carbon precursors, affording uniform nucleation and growth of monolayer graphene. Intriguingly, thus-obtained graphene acts as an ideal coating layer for the surface crystallographic modification of soda-lime glass, making it epitaxy substrates for synthesizing high-quality PbI2 nanoplates and continues films. Accordingly, a prototype photodetector was fabricated to present excellent photoelectrical properties of high responsivity (~ 600 on/off current ratio) and fast response speed (18 μs). This work hereby paves ways for the batch production and the direct applications of graphene glass as platforms for constructing high performance electronic and optoelectronic devices.展开更多
Scalable synthesis of transfer-free graphene over insulators offers exciting opportunity for next-generation electronics and optoelectronics.However,rational design of synthetic protocols to harvest wafer-scale produc...Scalable synthesis of transfer-free graphene over insulators offers exciting opportunity for next-generation electronics and optoelectronics.However,rational design of synthetic protocols to harvest wafer-scale production of directly grown graphene still remains a daunting challenge.Herein we explore a batch synthesis of large-area graphene with wafer-scale uniformity by virtue of direct chemical vapor deposition(CVD)on quartz.Such a controllable CVD approach allows to synthesize 30 pieces of 4-inch graphene wafers in one batch,affording a low fluctuation of optical and electrical properties.Computational fluid dynamics simulations reveal the mechanism of uniform growth,indicating thermal field and confined flow field play leading roles in attaining the batch uniformity.The resulting wafer-scale graphene enables the direct utilization as key components in optical elements.Our method is applicable to other types of insulating substrates(e.g.,sapphire,SiO2/Si,Si3N4),which may open a new avenue for direct manufacture of graphene wafers in an economic fashion.展开更多
基金the National Key R&D Program of China(Nos.2019YFA0708201 and 2019YFA0708204)the National Natural Science Foundation of China(Nos.T2188101,61527814,and 22179089)+3 种基金the Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXTD-202001)the Beijing Municipal Science and Technology Planning Project(No.Z191100000819004)the Science Fund for Distinguished Young Scholars of Jiangsu Province(No.BK20211503)the Suzhou Science and Technology Project-Prospective Application Research Program(No.SYG202038).
文摘Gaseous promotors have readily been adopted during the direct synthesis of graphene over insulators to enhance the growth quality and/or boost the growth rate.The understanding of the real functions of carbon-containing promotors has still remained elusive.In this study,we identify the critical roles of a representative CO_(2)promotor played in the direct growth of graphene.The comparative experimental trials validate CO_(2)as an effective modulator to decrease graphene nucleation density,improve growth kinetics,mitigate adlayer formation.The first-principles calculations illustrate that the generation of gas-phase OH species in CO_(2)-assisted system helps decrease the energy barriers of CH4 decomposition and carbon attachment to the growth front,which might be the key factor to allow high-quality direct growth.Such a CO_(2)-promoted strategy enables the conformal coating of graphene film over curved insulators,where the sheet resistance of grown graphene on quartz reaches as low as 1.26 kΩ·sq^(−1)at an optical transmittance of~95.8%.The fabricated endoscope lens based on our conformal graphene harvests an apoptosis of 82.8%for noninvasive thermal therapy.The work presented here is expected to motivate further investigations in the controllable growth of high-quality graphene on insulating substrates.
基金the National Key Research and Development Program of China(No.2016YFA0200103)the National Natural Science Foundation of China(Nos.61527814,51702225,51432002,61474109,51290272,51502007,11474274,51520105003,51672007)+3 种基金National Equipment Program of China(No.ZDYZ2015-1)Beijing Municipal Science Technology Planning Project(Nos.Z 161100002116020,Z161100002116032)Beijing Natural Science Foundation(No.4182063)and Natural Science Foundation of Jiangsu Province(No.BK 20170336).
文摘Growing high quality graphene films directly on glass by chemical vapor deposition(CVD)meets a growing demand for constructing high-performance electronic and optoelectronic devices.However,the graphene synthesized by prevailing methodologies is normally of polycrystalline nature with high nucleation density and limited domain size,which significantly handicaps its overall properties and device performances.Herein,we report an oxygen-assisted CVD strategy to allow the direct synthesis of 6-inch-scale graphene glass harvesting markedly increased graphene domain size(from 0.2 to 1.8μm).Significantly,as-produced graphene glass attains record high electrical conductivity(realizing a sheet resistance of 900Ω·sq^(-1)at a visible-light transmittance of 92%)amongst the state-of-the-art counterparts,readily serving as transparent electrodes for fabricating high-performance optical filter devices.This work might open a new avenue for the scalable production and application of emerging graphene glass materials with high quality and low cost.
基金supported by the National Basic Research Program of China (No.2016YFA0200103)the National Natural Science Foundation of China (Nos.51432002 and 51290272)the Beijing Municipal Science and Technology Planning Project (No.Z161100002116020).
文摘Direct growth of large area uniform graphene on functional insulating materials is essential for engineering versatile applications of graphene. However, the existing synthesis approaches can hardly avoid the generation of non-uniform multilayer graphene along the gas flow direction, affording huge challenges for further scaling up. Herein, by exploiting the molten state of soda-lime glass, we have accomplished the direct growth of large area uniform (up to 30 cm × 6 cm) graphene via a facile chemical vapor deposition route on low cost soda-lime glass. The use of molten glass eliminates the chemically active sites (surface corrugations, scratches, defects), and improves the mobility of carbon precursors, affording uniform nucleation and growth of monolayer graphene. Intriguingly, thus-obtained graphene acts as an ideal coating layer for the surface crystallographic modification of soda-lime glass, making it epitaxy substrates for synthesizing high-quality PbI2 nanoplates and continues films. Accordingly, a prototype photodetector was fabricated to present excellent photoelectrical properties of high responsivity (~ 600 on/off current ratio) and fast response speed (18 μs). This work hereby paves ways for the batch production and the direct applications of graphene glass as platforms for constructing high performance electronic and optoelectronic devices.
基金This work was financially supported by the National Basic Research Program of China(No.2016YFA0200103)the National Natural Science Foundation of China(Nos.61527814,51702225,51432002,61474109,51290272,51502007,11474274,and 51672007)+2 种基金the National Equipment Program of China(No.ZDYZ2015-1)Beijing Municipal Science and Technology Planning Project(Nos.Z181100004818002 and Z191100000819004)Beijing Natural Science Foundation(No.4182063).
文摘Scalable synthesis of transfer-free graphene over insulators offers exciting opportunity for next-generation electronics and optoelectronics.However,rational design of synthetic protocols to harvest wafer-scale production of directly grown graphene still remains a daunting challenge.Herein we explore a batch synthesis of large-area graphene with wafer-scale uniformity by virtue of direct chemical vapor deposition(CVD)on quartz.Such a controllable CVD approach allows to synthesize 30 pieces of 4-inch graphene wafers in one batch,affording a low fluctuation of optical and electrical properties.Computational fluid dynamics simulations reveal the mechanism of uniform growth,indicating thermal field and confined flow field play leading roles in attaining the batch uniformity.The resulting wafer-scale graphene enables the direct utilization as key components in optical elements.Our method is applicable to other types of insulating substrates(e.g.,sapphire,SiO2/Si,Si3N4),which may open a new avenue for direct manufacture of graphene wafers in an economic fashion.