期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Use of GIS Based Maps for Preliminary Assessment of Subsoil of Guwahati City 被引量:1
1
作者 binu sharma Shaffi Kamal Rahman 《Journal of Geoscience and Environment Protection》 2016年第5期106-116,共11页
Guwahati, the major city in the North Eastern region of India is growing rapidly in every aspect with major infrastructures like sports complex, educational institutions, hospitals, flyovers, multiplex halls, etc. Kno... Guwahati, the major city in the North Eastern region of India is growing rapidly in every aspect with major infrastructures like sports complex, educational institutions, hospitals, flyovers, multiplex halls, etc. Knowledge of the subsurface soil condition is necessary to ensure the structural safety and serviceability of the above mentioned structures before any construction. Therefore, contour maps of Standard penetration test N value, ground water table and shear wave velocity map using Geographical Information System (GIS) platform will be of great help to the foundation designers at the initial stage for site selection and preliminary foundation design under static and seismic condition. Contour maps of Standard penetration test N value at different depth and average contour map of N value of Guwahati city have been prepared. Standard penetration Test N values and depth of water table were taken from a data base of 200 boreholes up to 30 meter depth to prepare N value contour map of Guwahati city. A regression equation between shear wave velocity V<sub>s</sub> and Standard penetration test N value based on twenty seven previous similar correlations was also developed. This regression equation was used to determine shear wave velocity of Guwahati city. The average shear wave velocities for 30 m depth for all locations had been determined and used to generate map on (GIS) platform. Other subsurface geotechnical information of Guwahati city like soil classification and depth to water level from ground surface is also presented in the form of GIS based maps in order to form a data base. 展开更多
关键词 Standard Penetration Test Shear Wave Velocity Contour Map GIS Based Maps Subsurface Investigation
下载PDF
Behaviour of Batter Micropiles Subjected to Vertical and Lateral Loading Conditions
2
作者 binu sharma Zakir Hussain 《Journal of Geoscience and Environment Protection》 2019年第2期206-220,共15页
Micropiles are drilled and grouted piles having diameter between 100 to 250 mm. Due to its small diameter, it is suitable for low headroom and limited work area conditions. It can be installed without noise nuisance, ... Micropiles are drilled and grouted piles having diameter between 100 to 250 mm. Due to its small diameter, it is suitable for low headroom and limited work area conditions. It can be installed without noise nuisance, without vibrations to surrounding soils and structures and without disruption to the production operations in industries which makes micropiles suitable for underpinning and seismic retrofitting of structures. It is necessary to therefore understand the behaviour of micropiles under different loading conditions. This work is on vertical and battered micropiles with different length/diameter ratio (L/D) subjected to vertical and lateral loading conditions. Batter angles had a significant influence on both the vertical and lateral load carrying capacity. The ultimate vertical load was found to increase upto a 30&#176;batter. The ultimate lateral load was found to increase significantly with increasing L/D ratios upto an L/D ratio of 30 for vertical and 48 for battered piles, beyond which the increase was found to be not significant. In general, negative battered micropiles offered more lateral resistance than positive battered micropiles. The results of the study indicated that the ultimate load capacity and mode of failure of the micropiles are a function of the angle of batter, direction of batter and the L/D ratio for vertically and laterally loaded micropiles. 展开更多
关键词 BATTER Micropiles VERTICAL LOAD LATERAL LOAD Length to DIAMETER Ratio Failure Mechanism
下载PDF
Liquefaction Potential Assessment of Guwahati City Using One Dimensional Ground Response Analysis
3
作者 Amar Farooq Siddique binu sharma 《Journal of Geoscience and Environment Protection》 2020年第5期176-194,共19页
Guwahati city which lies in the North Eastern region of India, falls in the highest seismic risk zonal level i.e. zone V in India. However, there are very few works on seismic hazard analysis of Guwahati soil consider... Guwahati city which lies in the North Eastern region of India, falls in the highest seismic risk zonal level i.e. zone V in India. However, there are very few works on seismic hazard analysis of Guwahati soil considering the local site effects. The effect of large modifications in seismic waves that occur due to variation in soil properties near the surface of the earth is of great importance in geotechnical earthquake engineering. Seismic soil liquefaction, a soil seismic hazard, is evaluated in Guwahati city in terms of factor of safety against liquefaction along the soil profiles using ground response analysis. One dimensional ground response analysis has been conducted using equivalent linear and non linear method using the Deepsoil software. The input motion of 2011 Sikkim earthquake (Mw = 6.9) having bedrock PGA of 0.152 g at 30 m depth is considered. A comparative study has been made of the equivalent linear and non linear analysis in terms of surface PGA (g), maximum strain (%), maximum stress ratio and liquefaction potential using soil profiles of Guwahati city. It has been observed that stiffer soil layer results in similar PGA from both the analysis however non linear analysis generally gives a lesser surface PGA than by equivalent linear analysis. Non linear analysis generally gives a higher strain range and a lower maximum stress ratio as compared to the equivalent linear method. A slightly higher factor of safety is obtained using non linear analysis than using equivalent linear analysis. A soil database of 200 bore holes was used for the study. Spatial distribution of soil liquefaction potential is presented in the form of GIS based maps of factor of safety values. 展开更多
关键词 GROUND Response Analysis EQUIVALENT LINEAR METHOD Non LINEAR METHOD Soil LIQUEFACTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部