We fabricate a pair of fiber Bragg gratings(FBGs)by a visible femtosecond laser phase mask scanning technique on passive large-mode-area double-cladding fibers for multi-kilowatt fiber oscillators.The bandwidth of hig...We fabricate a pair of fiber Bragg gratings(FBGs)by a visible femtosecond laser phase mask scanning technique on passive large-mode-area double-cladding fibers for multi-kilowatt fiber oscillators.The bandwidth of high-reflection(HR)and lowreflection(LR)FBG is~1.6 nm and 0.3 nm,respectively.The reflection of the HR-FBG is higher than 99%,and that of the LR-FBG is about 10%.A bidirectional pumped all-fiber oscillator is constructed using this pair of FBGs,a record output power of 5027 W located in the signal core is achieved with a slope efficiency of~82.1%,and the beam quality factor M2is measured to be~1.6 at the maximum power.The FBGs are simply fixed on a water cooling plate without a special package,and the thermal efficiency of the HR-FBG and the LR-FBG is 2.76℃/kW and 1℃/kW,respectively.Our research provides an effective solution for robust high-power all-fiber laser oscillators.展开更多
We report here the first hundred-watt continuous wave fiber gas laser in H_(2)-filled hollow-core photonic crystal fiber(PCF)by stimulated Raman scattering.The pump source is a homemade narrow-linewidth fiber oscillat...We report here the first hundred-watt continuous wave fiber gas laser in H_(2)-filled hollow-core photonic crystal fiber(PCF)by stimulated Raman scattering.The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W.To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas,a hollow-core fiber end-cap is fabricated and used at the input end.A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2,and the conversion efficiency of the first Stokes power is around 48.9%.This work paves the way for high-power fiber gas Raman lasers.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11974427 and 12004431)State Key Laboratory of Pulsed Power Laser(Nos.SKL-2020ZR05 and SKL2021ZR01)Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20200046)。
文摘We fabricate a pair of fiber Bragg gratings(FBGs)by a visible femtosecond laser phase mask scanning technique on passive large-mode-area double-cladding fibers for multi-kilowatt fiber oscillators.The bandwidth of high-reflection(HR)and lowreflection(LR)FBG is~1.6 nm and 0.3 nm,respectively.The reflection of the HR-FBG is higher than 99%,and that of the LR-FBG is about 10%.A bidirectional pumped all-fiber oscillator is constructed using this pair of FBGs,a record output power of 5027 W located in the signal core is achieved with a slope efficiency of~82.1%,and the beam quality factor M2is measured to be~1.6 at the maximum power.The FBGs are simply fixed on a water cooling plate without a special package,and the thermal efficiency of the HR-FBG and the LR-FBG is 2.76℃/kW and 1℃/kW,respectively.Our research provides an effective solution for robust high-power all-fiber laser oscillators.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11974427 and 12004431)the Science and Technology Innovation Program of Hunan Province(No.2021RC4027)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20200017)
文摘We report here the first hundred-watt continuous wave fiber gas laser in H_(2)-filled hollow-core photonic crystal fiber(PCF)by stimulated Raman scattering.The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W.To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas,a hollow-core fiber end-cap is fabricated and used at the input end.A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2,and the conversion efficiency of the first Stokes power is around 48.9%.This work paves the way for high-power fiber gas Raman lasers.