The crystallized mullite composite has been synthesized via sol-gel technique in the presence of transition metal ions such as iron and copper. The electrical resistivity and activation energy of the composites have b...The crystallized mullite composite has been synthesized via sol-gel technique in the presence of transition metal ions such as iron and copper. The electrical resistivity and activation energy of the composites have been measured and their variation with concentration of the metal ion has been investigated. The resistivity of doped mullite decreases rapidly in the shorter temperature range and sharply in the higher temperature range. The decreasing resistivity is due to the 3d orbital electrons and the concentration of metal ions present. X-ray analysis confirms the presence of metal ions in mullite, which entered in the octahedral site. The Fe2+ and Cu2+ ions will substitute Al3+ ion in the octahedral site of mullite structure and most probably will be responsible for reducing the resistivity as well as the activation energy. Transition metal ion doped mullite-based ceramic can be considered as promising material as a substrate in the electronic industry, because of its reasonable atom density, its low activation characteristics, low thermal expansion coefficient and high mechanical strength. The present material we have developed has an activation energy of resistivity/band gap energy, Eg, 1.11 eV at 0.04 M concentration for Cu2+ ion.展开更多
Highly crystallized mullite has been achieved at temperatures of 1100℃and 1400℃by sol-gel technique in presence of titanium and strontium ions of different concentrations:G_(0)=0 M,G_(1)=0.002 M,G_(2)=0.01 M,G_(3)=0...Highly crystallized mullite has been achieved at temperatures of 1100℃and 1400℃by sol-gel technique in presence of titanium and strontium ions of different concentrations:G_(0)=0 M,G_(1)=0.002 M,G_(2)=0.01 M,G_(3)=0.02 M,G_(4)=0.1 M,G_(5)=0.2 M and G6=0.5 M.X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),field emission scanning electron microscopy(FESEM),LCR meter characterized the samples.Mullite formation was found to depend on the concentration of the ions.The dielectric properties(dielectric constant,loss tangent and AC conductivity)of the composites have been measured,and their variation with increasing frequency and concentration of the doped metals was investigated.All the experiments were performed at room temperature.The composites showed maximum dielectric constants of 24.42 and 37.6 at 1400℃of 0.01 M concentration for titanium and strontium ions at 2 MHz,respectively.Due to the perfect nature of the doped mullite,it can be used for the fabrication of high charge storing capacitors and also as ceramic capacitors in the pico range.展开更多
文摘The crystallized mullite composite has been synthesized via sol-gel technique in the presence of transition metal ions such as iron and copper. The electrical resistivity and activation energy of the composites have been measured and their variation with concentration of the metal ion has been investigated. The resistivity of doped mullite decreases rapidly in the shorter temperature range and sharply in the higher temperature range. The decreasing resistivity is due to the 3d orbital electrons and the concentration of metal ions present. X-ray analysis confirms the presence of metal ions in mullite, which entered in the octahedral site. The Fe2+ and Cu2+ ions will substitute Al3+ ion in the octahedral site of mullite structure and most probably will be responsible for reducing the resistivity as well as the activation energy. Transition metal ion doped mullite-based ceramic can be considered as promising material as a substrate in the electronic industry, because of its reasonable atom density, its low activation characteristics, low thermal expansion coefficient and high mechanical strength. The present material we have developed has an activation energy of resistivity/band gap energy, Eg, 1.11 eV at 0.04 M concentration for Cu2+ ion.
基金We are grateful to DST and UGC(PURSE program),Government of India,for the financial assistance.
文摘Highly crystallized mullite has been achieved at temperatures of 1100℃and 1400℃by sol-gel technique in presence of titanium and strontium ions of different concentrations:G_(0)=0 M,G_(1)=0.002 M,G_(2)=0.01 M,G_(3)=0.02 M,G_(4)=0.1 M,G_(5)=0.2 M and G6=0.5 M.X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),field emission scanning electron microscopy(FESEM),LCR meter characterized the samples.Mullite formation was found to depend on the concentration of the ions.The dielectric properties(dielectric constant,loss tangent and AC conductivity)of the composites have been measured,and their variation with increasing frequency and concentration of the doped metals was investigated.All the experiments were performed at room temperature.The composites showed maximum dielectric constants of 24.42 and 37.6 at 1400℃of 0.01 M concentration for titanium and strontium ions at 2 MHz,respectively.Due to the perfect nature of the doped mullite,it can be used for the fabrication of high charge storing capacitors and also as ceramic capacitors in the pico range.