In this paper,we consider pseudoharmonic heat flow with small initial horizontal energy and give the existence of pseudoharmonic maps from closed pseudo-Hermitian manifolds into closed Riemannian manifolds.
In the past decades,the Incoherent Scatter Radar(ISR)has been demonstrated to be one of the most powerful instruments for ionosphere monitoring.The Institute of Geology and Geophysics at the Chinese Academy of Science...In the past decades,the Incoherent Scatter Radar(ISR)has been demonstrated to be one of the most powerful instruments for ionosphere monitoring.The Institute of Geology and Geophysics at the Chinese Academy of Sciences was founded to build a state-ofthe-art phased-array ISR at Sanya(18.3°N,109.6°E),a low-latitude station on Hainan Island,named the Sanya ISR(SYISR).As a first step,a prototype radar system consisting of eight subarrays(SYISR-8)was built to reduce the technical risk of producing the entire large array.In this work,we have summarized the preliminary experimental results based on the SYISR-8.The amplitude and phase among 256 channels were first calibrated through an embedded internal monitoring network.The mean oscillation of the amplitude and phase after calibration were about 1 dB and 5°,respectively,which met the basic requirements.The beam directivity was confirmed by crossing screen of the International Space Station.The SYISR-8 was further used to detect the tropospheric wind profile and meteors.The derived winds were evaluated by comparison with independent radiosonde and balloon-based GPS measurements.The SYISR-8 was able to observe several typical meteor echoes,such as the meteor head echo,range-spread trail echo,and specular trail echo.These results confirmed the validity and reliability of the SYISR-8 system,thereby reducing the technical risk of producing the entire large array of the SYISR to some extent.展开更多
Meteoroids entering the Earth's atmosphere can create meteor trail irregularity seriously disturbing the background ionosphere. Although numerous observations of meteor trail irregularities were performed with VHF...Meteoroids entering the Earth's atmosphere can create meteor trail irregularity seriously disturbing the background ionosphere. Although numerous observations of meteor trail irregularities were performed with VHF/UHF coherent scatter radars in the past, no simultaneous radar and optical instruments were employed to investigate the characteristics of meteor trail irregularity and its corresponding meteoroid. By installing multiple video cameras near the Sanya VHF radar site, an observational campaign was conducted during the period from November 2016 to February 2017. A total of 242 optical meteors with simultaneous non-specular echoes backscattered from the plasma irregularities generated in the corresponding meteor trails were identified. A good agreement between the angular positions of non-specular echoes derived from the Sanya radar interferometer and those of optical meteors was found,validating that the radar system phase offsets have been properly calibrated. The results also verify the interferometry capability of Sanya radar for meteor trail irregularity observation. The non-specular echoes with simultaneous optical meteors were detected at magnetic aspect angles greater than ~78°. Based on the meteor visual magnitude estimated from the optical data, it was found that the radar nonspecular echoes corresponding to brighter meteors survived for longer duration. This could provide observational evidence for the significance of meteoroid mass on the duration of meteor trail irregularity. On the other hand, the simultaneous radar and video common-volume observations showed that there were some cases with optical meteors but without radar non-specular echoes. One possibility could be that some of the optical meteors appeared at extremely low altitudes where meteor trail irregularities rarely occur.展开更多
文摘In this paper,we consider pseudoharmonic heat flow with small initial horizontal energy and give the existence of pseudoharmonic maps from closed pseudo-Hermitian manifolds into closed Riemannian manifolds.
基金This work was supported by the National Natural Science Foundation of China(grant no.41427901)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant no.XDA17010206).We acknowledge the significant contributions of the engineering team from the Nanjing Research Institute of Electronics Technology beyond the author list.The experimental data can be obtained upon request through the corresponding authors.
文摘In the past decades,the Incoherent Scatter Radar(ISR)has been demonstrated to be one of the most powerful instruments for ionosphere monitoring.The Institute of Geology and Geophysics at the Chinese Academy of Sciences was founded to build a state-ofthe-art phased-array ISR at Sanya(18.3°N,109.6°E),a low-latitude station on Hainan Island,named the Sanya ISR(SYISR).As a first step,a prototype radar system consisting of eight subarrays(SYISR-8)was built to reduce the technical risk of producing the entire large array.In this work,we have summarized the preliminary experimental results based on the SYISR-8.The amplitude and phase among 256 channels were first calibrated through an embedded internal monitoring network.The mean oscillation of the amplitude and phase after calibration were about 1 dB and 5°,respectively,which met the basic requirements.The beam directivity was confirmed by crossing screen of the International Space Station.The SYISR-8 was further used to detect the tropospheric wind profile and meteors.The derived winds were evaluated by comparison with independent radiosonde and balloon-based GPS measurements.The SYISR-8 was able to observe several typical meteor echoes,such as the meteor head echo,range-spread trail echo,and specular trail echo.These results confirmed the validity and reliability of the SYISR-8 system,thereby reducing the technical risk of producing the entire large array of the SYISR to some extent.
基金carried out as a part of the project funded by the National Natural Science Foundation of China (41422404 and 41727803)
文摘Meteoroids entering the Earth's atmosphere can create meteor trail irregularity seriously disturbing the background ionosphere. Although numerous observations of meteor trail irregularities were performed with VHF/UHF coherent scatter radars in the past, no simultaneous radar and optical instruments were employed to investigate the characteristics of meteor trail irregularity and its corresponding meteoroid. By installing multiple video cameras near the Sanya VHF radar site, an observational campaign was conducted during the period from November 2016 to February 2017. A total of 242 optical meteors with simultaneous non-specular echoes backscattered from the plasma irregularities generated in the corresponding meteor trails were identified. A good agreement between the angular positions of non-specular echoes derived from the Sanya radar interferometer and those of optical meteors was found,validating that the radar system phase offsets have been properly calibrated. The results also verify the interferometry capability of Sanya radar for meteor trail irregularity observation. The non-specular echoes with simultaneous optical meteors were detected at magnetic aspect angles greater than ~78°. Based on the meteor visual magnitude estimated from the optical data, it was found that the radar nonspecular echoes corresponding to brighter meteors survived for longer duration. This could provide observational evidence for the significance of meteoroid mass on the duration of meteor trail irregularity. On the other hand, the simultaneous radar and video common-volume observations showed that there were some cases with optical meteors but without radar non-specular echoes. One possibility could be that some of the optical meteors appeared at extremely low altitudes where meteor trail irregularities rarely occur.