Optical microscope(OM),scanning electron microscope(SEM),transmission electron microscope(TEM)and tensile machine were used to characterize the microstructures and mechanical properties of as-forged and aged Mg-9.5Gd-...Optical microscope(OM),scanning electron microscope(SEM),transmission electron microscope(TEM)and tensile machine were used to characterize the microstructures and mechanical properties of as-forged and aged Mg-9.5Gd-3.8Y-0.6Zr alloys.The results show that a novel kind of dislocation arrays,comprising parallel arranged dislocations,were obtained in the forged alloy.The arrays tend to extend parallel and are heterogeneously distributed with adjacent distances varying from 0.3μm to 1.4μm.After aging the alloy at 265°C,a large number of preferential-oriented phases were precipitated on the dislocation arrays,forming a structure of"precipitation chains"(PCs),which results in simultaneous increments of strength and ductility.展开更多
基金The authors are grateful to the financial support from the National Basic Research Program of China(Grant no.2013 CB632200)the National Natural Science Foundation of China(Grant no.51574291)the Fund amental Research Funds for the Central Universities of Central South University(Grant no.502220002).
文摘Optical microscope(OM),scanning electron microscope(SEM),transmission electron microscope(TEM)and tensile machine were used to characterize the microstructures and mechanical properties of as-forged and aged Mg-9.5Gd-3.8Y-0.6Zr alloys.The results show that a novel kind of dislocation arrays,comprising parallel arranged dislocations,were obtained in the forged alloy.The arrays tend to extend parallel and are heterogeneously distributed with adjacent distances varying from 0.3μm to 1.4μm.After aging the alloy at 265°C,a large number of preferential-oriented phases were precipitated on the dislocation arrays,forming a structure of"precipitation chains"(PCs),which results in simultaneous increments of strength and ductility.