Freeze-dried coconut press cake powder (CPP), 43% w/w protein, was used to investigate the heat-induced gelation by heating in rheometer to 75℃ in a wide range of pH values, from 4 to 9. Low strain oscillatory method...Freeze-dried coconut press cake powder (CPP), 43% w/w protein, was used to investigate the heat-induced gelation by heating in rheometer to 75℃ in a wide range of pH values, from 4 to 9. Low strain oscillatory method applied the measure visco-elastic propertieson 15% w/w CPP. The gel strength was also assessed by a texture analyzer. SDS-PAGE electrophoresis was conducted to identify the proteins evolved in the gel network structure and the gel micro-structure was also evaluated. At low pH, the CPP proteins formed soft (elastic modulus <100 Pa) particulate gels prone to syneresis, with aggregate size of the order of 4.2 micrometers. In the alkaline region, homogenous gels were induced by heating. Gel strength started to increase dramatically from 64℃ to 67℃, for pH 9 and pH 8 respectively, reaching the maximum gel elastic modulus over 1000 Pa at pH 9. The SDS-PAGE showed that the polypeptide sub-unities at 24, 32 - 34 and 53 kDa were the most prominent in gelation.展开更多
基金funded by SIDA(Swedish International Development Agency).
文摘Freeze-dried coconut press cake powder (CPP), 43% w/w protein, was used to investigate the heat-induced gelation by heating in rheometer to 75℃ in a wide range of pH values, from 4 to 9. Low strain oscillatory method applied the measure visco-elastic propertieson 15% w/w CPP. The gel strength was also assessed by a texture analyzer. SDS-PAGE electrophoresis was conducted to identify the proteins evolved in the gel network structure and the gel micro-structure was also evaluated. At low pH, the CPP proteins formed soft (elastic modulus <100 Pa) particulate gels prone to syneresis, with aggregate size of the order of 4.2 micrometers. In the alkaline region, homogenous gels were induced by heating. Gel strength started to increase dramatically from 64℃ to 67℃, for pH 9 and pH 8 respectively, reaching the maximum gel elastic modulus over 1000 Pa at pH 9. The SDS-PAGE showed that the polypeptide sub-unities at 24, 32 - 34 and 53 kDa were the most prominent in gelation.