Let G be a locally compact Vilenkin group. In this paper the authors study the boundedness of bilinear operators B(f, g) given by finite sums of products of Calderdn-Zygmund operators in Herz space and Herz-type Har...Let G be a locally compact Vilenkin group. In this paper the authors study the boundedness of bilinear operators B(f, g) given by finite sums of products of Calderdn-Zygmund operators in Herz space and Herz-type Hardy space on G. And an example, the boundedness from the products of Herz space to Herz-type Hardy space is given in the last section.展开更多
In this paper, the authors study the with non-isotropic dilation on product domains. LP-mapping properties of certain maximal operators As an application, the LP-boundedness of the corre- sponding nomisotropic multipl...In this paper, the authors study the with non-isotropic dilation on product domains. LP-mapping properties of certain maximal operators As an application, the LP-boundedness of the corre- sponding nomisotropic multiple singular integral operator is also obtained. Here the integral kernel functions Ω belong to the spaces L(logL)a(E1 × E2) for some a 〉 0, which is optimal.展开更多
Though the theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well developed in the past decades, the multi-parameter counterpart of such a theory is still absent. The main purpose of this paper i...Though the theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well developed in the past decades, the multi-parameter counterpart of such a theory is still absent. The main purpose of this paper is to develop a theory of multi-parameter Triebel-Lizorkin and Besov spaces using the discrete Littlewood-Paley-Stein analysis in the setting of implicit multi-parameter structure. It is motivated by the recent work of Han and Lu in which they established a satisfactory theory of multi-parameter Littlewood-Paley-Stein analysis and Hardy spaces associated with the flag singular integral operators studied by Muller-Ricci-Stein and Nagel-Ricci-Stein. We also prove the boundedness of flag singular integral operators on Triebel-Lizorkin space and Besov space. Our methods here can be applied to develop easily the theory of multi-parameter Triebel-Lizorkin and Besov spaces in the pure product setting.展开更多
文摘Let G be a locally compact Vilenkin group. In this paper the authors study the boundedness of bilinear operators B(f, g) given by finite sums of products of Calderdn-Zygmund operators in Herz space and Herz-type Hardy space on G. And an example, the boundedness from the products of Herz space to Herz-type Hardy space is given in the last section.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10771054, 10971141)the NSF of Beijing (Grant No. 1092004)
文摘In this paper, the authors study the with non-isotropic dilation on product domains. LP-mapping properties of certain maximal operators As an application, the LP-boundedness of the corre- sponding nomisotropic multiple singular integral operator is also obtained. Here the integral kernel functions Ω belong to the spaces L(logL)a(E1 × E2) for some a 〉 0, which is optimal.
基金supported partly by NSF of China (No. 10571015)SRFDP of China (No. 20050027025)+2 种基金supported by the U.S. NSF (Grant DMS No. 0500853)supported partly by NSF of China (No. 10771054)supported by NSF of China (No, 10811120558)
文摘Though the theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well developed in the past decades, the multi-parameter counterpart of such a theory is still absent. The main purpose of this paper is to develop a theory of multi-parameter Triebel-Lizorkin and Besov spaces using the discrete Littlewood-Paley-Stein analysis in the setting of implicit multi-parameter structure. It is motivated by the recent work of Han and Lu in which they established a satisfactory theory of multi-parameter Littlewood-Paley-Stein analysis and Hardy spaces associated with the flag singular integral operators studied by Muller-Ricci-Stein and Nagel-Ricci-Stein. We also prove the boundedness of flag singular integral operators on Triebel-Lizorkin space and Besov space. Our methods here can be applied to develop easily the theory of multi-parameter Triebel-Lizorkin and Besov spaces in the pure product setting.