Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this stu...Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this study,surface-functionalized cellulose nanocrystals(SF-CNCs)were prepared via hy-drochloric acid hydrolysis and chemical modification,with adaptable nanosize and considerable dispersion stability in low-permeability reservoirs.The SF-CNCs were structurally characterized by FT-IR,Cryo-TEM,which have a diameter of 5-10 nm and a length of 100-200 nm.The SF-CNC dispersions possessed higher stability and stronger salt-tolerance than those of corresponding CNC dispersions,due to the strong hydrophilicity of the sulfonic acid group.It was synergistically used with a non-ionic surfactant(APG1214)to formulate a combined flooding system(0.1 wt%SF-CNC+0.2 wt%APG1214).The combined flooding system exhibits strong emulsification stability,low oil-water interfacial tension of o.03 mN/m,and the ability to alter the wettability for oil-wetting rocks.Furthermore,the combined system was_able to provide an optimum EOR efficiency of 20.2%in low-permeability cores with 30.13×10^(-3)μm^(2).Notably.it can enlarge the sweep volume and increase the displacement efficiency simultaneously.Overall,the newly formulated nanocellulose/surfactant combined system exhibits a remarkable EoR performance in low-permeability reservoirs.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
Amphiphilic polymer gels are widely used in heterogeneous reservoirs for conformance control technology.However,in high temperature and high salinity of calcium and magnesium reservoirs,amphiphilic polymer gels cannot...Amphiphilic polymer gels are widely used in heterogeneous reservoirs for conformance control technology.However,in high temperature and high salinity of calcium and magnesium reservoirs,amphiphilic polymer gels cannot maintain effective performance.In this work,a novel reinforced amphiphilic polymer gel(F-PADC gel)was prepared by physically mixing polymer solution and fly ash(FA),which is an extremely low cost material.The viscoelasticity and stability of the F-PADC gel were studied by rheometry and micro-rheometry.The reinforced mechanism of FA on amphiphilic polymer gels was revealed.The results show that the addition of FA can make the gel more robust with a denser network structure.On the fifth day,the elastic modulus(G’)increases from 5.2 to 7.0 Pa and the viscosity modulus(G")increases from 0.4 to 0.6 Pa at the frequency of 1 Hz,which improves the viscoelasticity of the gel system.More importantly,the F-PADC gel does not degrade after aging at 85℃for 180 d.And its viscoelasticity increases obviously,G′and G"increase to 110.0 Pa and 3.5 Pa,respectively,showing excellent anti-aging stability.Moreover,FA amphiphilic polymer gels have a good injectivity and a perfect plugging rate of 98.86%,which is better than that of sole amphiphilic polymer gels.This novel mixed FA amphiphilic polymer gels can prove to be a better alternative to conventional polymer gels to enhance oil recovery in high temperature and high salinity reservoirs.展开更多
基金the China National Postdoctoral Program for Innovative Talents(Bx20200386)China Postdoctoral Science Foundation(2021M703586)+1 种基金Key Program of National Natural Science Foundation of China(52130401)National Natural Science Foundation of China(52204064,52104055)for financial support.
文摘Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this study,surface-functionalized cellulose nanocrystals(SF-CNCs)were prepared via hy-drochloric acid hydrolysis and chemical modification,with adaptable nanosize and considerable dispersion stability in low-permeability reservoirs.The SF-CNCs were structurally characterized by FT-IR,Cryo-TEM,which have a diameter of 5-10 nm and a length of 100-200 nm.The SF-CNC dispersions possessed higher stability and stronger salt-tolerance than those of corresponding CNC dispersions,due to the strong hydrophilicity of the sulfonic acid group.It was synergistically used with a non-ionic surfactant(APG1214)to formulate a combined flooding system(0.1 wt%SF-CNC+0.2 wt%APG1214).The combined flooding system exhibits strong emulsification stability,low oil-water interfacial tension of o.03 mN/m,and the ability to alter the wettability for oil-wetting rocks.Furthermore,the combined system was_able to provide an optimum EOR efficiency of 20.2%in low-permeability cores with 30.13×10^(-3)μm^(2).Notably.it can enlarge the sweep volume and increase the displacement efficiency simultaneously.Overall,the newly formulated nanocellulose/surfactant combined system exhibits a remarkable EoR performance in low-permeability reservoirs.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.
基金supported by Key Program of National Natural Science Foundation of China(No.52130401)National Natural Science Foundation of China(No.52104055)+1 种基金China National Postdoctoral Program for Innovative Talents(No.BX20200386)China Postdoctoral Science Foundation(No.2021M703586)。
文摘Amphiphilic polymer gels are widely used in heterogeneous reservoirs for conformance control technology.However,in high temperature and high salinity of calcium and magnesium reservoirs,amphiphilic polymer gels cannot maintain effective performance.In this work,a novel reinforced amphiphilic polymer gel(F-PADC gel)was prepared by physically mixing polymer solution and fly ash(FA),which is an extremely low cost material.The viscoelasticity and stability of the F-PADC gel were studied by rheometry and micro-rheometry.The reinforced mechanism of FA on amphiphilic polymer gels was revealed.The results show that the addition of FA can make the gel more robust with a denser network structure.On the fifth day,the elastic modulus(G’)increases from 5.2 to 7.0 Pa and the viscosity modulus(G")increases from 0.4 to 0.6 Pa at the frequency of 1 Hz,which improves the viscoelasticity of the gel system.More importantly,the F-PADC gel does not degrade after aging at 85℃for 180 d.And its viscoelasticity increases obviously,G′and G"increase to 110.0 Pa and 3.5 Pa,respectively,showing excellent anti-aging stability.Moreover,FA amphiphilic polymer gels have a good injectivity and a perfect plugging rate of 98.86%,which is better than that of sole amphiphilic polymer gels.This novel mixed FA amphiphilic polymer gels can prove to be a better alternative to conventional polymer gels to enhance oil recovery in high temperature and high salinity reservoirs.