In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,...In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes.展开更多
Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batter...Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batteries.In this work,the concept of concurrent hetero-/homo-geneous electrocatalysts is proposed to simultaneously mediate liquid-solid conversion of lithium polysulfides(LiPSs)and solid lithium disulfide/sulfide(Li_(2)S_(2)/Li_(2)S)propagation,the latter of which suffers from sluggish reduction kinetics due to buried conductive scaffold surface by extensive deposition of Li_(2)S_(2)/Li_(2)S.The selected model material to verify this concept is a two-in-one catalyst:carbon nanotube(CNT)scaffold supported iron-cobalt(Fe-Co)alloy nanoparticles and partially carbonized selenium(C-Se)component.The Fe-Co alloy serves as a heterogeneous electrocatalyst to seed Li_(2)S_(2)/Li_(2)S through sulphifilic active sites,while the C-Se sustainably releases soluble lithium polyselenides and functions as a homogeneous electrocatalyst to propagate Li_(2)S_(2)/Li_(2)S via solution pathways.Such bi-phasic mediation of the sulfur species benefits reduction kinetics of LiPS conversion,especially for the massive Li_(2)S_(2)/Li_(2)S growth scenario by affording an additional solution directed route in case of conductive surface being largely buried.This strategy endows the Li-S batteries with improved cycling stability(836 mA h g^(-1)after 180 cycles),rate capability(547 mA h g^(-1)at 4 C)and high sulfur loading superiority(2.96 mA h cm^(-2)at 2.4 mg cm^(-2)).This work hopes to enlighten the employment of bi-phasic electrocatalysts to dictate liquid-solid transformation of intermediates for conversion chemistry batteries.展开更多
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv...Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.展开更多
Lithium–sulfur(Li–S)batteries are considered as highly promising energy storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg^(-1).The highest practical energy density of Li–S batterie...Lithium–sulfur(Li–S)batteries are considered as highly promising energy storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg^(-1).The highest practical energy density of Li–S batteries reported at pouch cell level has exceeded 500 Wh kg^(-1),which significantly surpasses that of lithium-ion batteries.Herein,a 700 Wh kg^(-1)-level Li–S pouch cell is successfully constructed.The pouch cell is designed at 6 Ah level with high-sulfur-loading cathodes of 7.4 mgScm^(-2),limited anode excess(50μm in thickness),and lean electrolyte(electrolyte to sulfur ratio of 1.7 gelectrolyteg^(-1)S).Accordingly,an ultrahigh specific capacity of 1563 m A h g^(-1)is achieved with the addition of a redox comediator to afford a practical energy density of 695 Wh kg^(-1)based on the total mass of all components.The pouch cell can operate stably for three cycles and then failed due to rapidly increased polarization at the second discharge plateau.According to failure analysis,electrolyte exhaustion is suggested as the key limiting factor.This work achieves a significant breakthrough in constructing high-energy-density Li–S batteries and propels the development of Li–S batteries toward practical working conditions.展开更多
The stability of lithium metal anodes essentially dictates the lifespan of high-energy-density lithium metal batteries.Lithium nitrate(LiNO_(3))is widely recognized as an effective additive to stabilize lithium metal ...The stability of lithium metal anodes essentially dictates the lifespan of high-energy-density lithium metal batteries.Lithium nitrate(LiNO_(3))is widely recognized as an effective additive to stabilize lithium metal anodes by forming LiN_(x)O_(y)-containing solid electrolyte interphase(SEI).However,its poor solubility in electrolytes,especially ester electrolytes,hinders its applications in lithium metal batteries.Herein,an organic nitrate,isosorbide nitrate(ISDN),is proposed to replace LiNO_(3).ISDNhas a high solubility of 3.3M in ester electrolytes due to the introduction of organic segments in the molecule.The decomposition of ISDN generates LiN_(x)O_(y)-rich SEI,enabling uniform lithium deposition.The lifespan of lithium metal batteries with ISDN significantly increases from 80 to 155 cycles under demanding conditions.Furthermore,a lithium metal pouch cell of 439Whkg^(−1) delivers 50 cycles.This work opens a new avenue to develop additives by molecular modifications for practical lithium metal batteries.展开更多
Lithium-sulfur(Li-S)batteries have attracted extensive attention due to ultrahigh theoretical energy density of 2600 Wh kg^(-1).Liquid-solid deposition from dissolved lithium polysulfides(LiPSs)to solid lithium sulfid...Lithium-sulfur(Li-S)batteries have attracted extensive attention due to ultrahigh theoretical energy density of 2600 Wh kg^(-1).Liquid-solid deposition from dissolved lithium polysulfides(LiPSs)to solid lithium sulfide(Li_(2)S)largely determines the actual battery performances.Herein,a premature liquidsolid deposition process of LiPSs is revealed at higher thermodynamic potential than Li_(2)S deposition in Li-S batteries.The premature solid deposit exhibits higher chemical state and hemispherical morphology in comparison with Li_(2)S,and the premature deposition process is slower in kinetics and higher in deposition dimension.Accordingly,a supersaturation deposition mechanism is proposed to rationalize the above findings based on thermodynamic simulation.This work demonstrates a unique premature liquid-solid deposition process of Li-S batteries.展开更多
Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a chal...Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices.展开更多
Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainabi...Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery.展开更多
Solid electrolyte interphase(SEI)has been widely recognized as the most important and the least understood component in lithium batteries.Considering the intrinsic instability in both chemical and mechanical,the failu...Solid electrolyte interphase(SEI)has been widely recognized as the most important and the least understood component in lithium batteries.Considering the intrinsic instability in both chemical and mechanical,the failure of SEI is inevitable and strongly associated with the performance decay of practical working batteries.In this Review,the failure mechanisms and the corresponding regulation strategies of SEI are focused.Firstly,the fundamental properties of SEI,including the formation principles,and the typical composition and structures are briefly introduced.Moreover,the common SEI failure modes involving thermal failure,chemical failure,and mechanical failure are classified and discussed,respectively.Beyond that,the regulation strategies of SEI with respect to different failure modes are further concluded.Finally,the future endeavor in further disclosing the mysteries of SEI is prospected.展开更多
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfu...Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.展开更多
Electrocatalytic carb on dioxide reducti on(CO_(2)R)presents a promising route to establish zero-e mission carb on cycle and store in termittent ren ewable energy into chemical fuels for steady energy supply.Methanol ...Electrocatalytic carb on dioxide reducti on(CO_(2)R)presents a promising route to establish zero-e mission carb on cycle and store in termittent ren ewable energy into chemical fuels for steady energy supply.Methanol is an ideal energy carrier as alternative fuels and one of the most important commodity chemicals.Nevertheless,methanol is currently mainly produced from fossil-based syngas,the production of which yields tremendous carb on emission globally.Direct CO_(2)R towards metha nol poses great potential to shift the paradigm of methanol production.In this perspective,we focus our discussions on producing methanol from electrochemical CO_(2)R,using metallomacrocyclic molecules as the model catalysts.We discuss the motivation of having methanol as the sole CO_(2)R product,the documented application of metallomacrocyclic catalysts for CO_(2)R,and recent advance in catalyzing CO_(2) to methanol with cobalt phthalocyanine-based catalysts.We attempt to understand the key factors in determining the activity,selectivity,and stability of electrocatalytic CO_(2)-to-methanol conversion,and to draw mechanistic insights from existing observations.Finally,we identify the challenges hindering methanol electrosynthesis directly from CO_(2) and some intriguing directions worthy of further investigation and exploration.展开更多
In the light of wireless and non-fossil society based on portable electronics, electric vehicles, and smart grids, secondary batteries with higher energy density, faster charge, and safer operation are pursued persist...In the light of wireless and non-fossil society based on portable electronics, electric vehicles, and smart grids, secondary batteries with higher energy density, faster charge, and safer operation are pursued persistently [1]. Nowadays, commercial lithium(Li)-ion batteries have been practically applied in our daily life. However,the energy density of Li-ion batteries based on intercalation chemistry is approaching to the theoretical value due to the limited specific capacity of graphite anode(372 mA h g-1) [2].展开更多
The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for...The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for interfacial stabilization are particularly indistinct. Herein, the effect of various sulfur-containing components in SEI for stabilizing lithium metal anodes is disclosed in lithium–sulfur batteries. High-valence sulfur-containing species(Li_(2)SO_(3) and Li_(2)SO_(4)) in SEI are conducive to uniform lithium deposition and stabilizing lithium metal anodes. In contrast, low-valence sulfur-containing species(Li_(2)S_(3) and Li_(2)S_(4)) in SEI result in aggressive lithium dendrites and dead lithium. This work identifies the role of sulfurcontaining components in SEI for stabilizing lithium metal anodes and provides rational design principles of SEI for protecting lithium metal anodes in practical lithium–sulfur batteries.展开更多
Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electroca...Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electrocatalytic surface is the first step to rationally introduce polysulfide electrocatalysts for kinetic promotion in a working battery.Herein,crystalline lithium sulfide(Li_(2)S)is exclusively observed on electrocatalytic surface with uniform spherical morphology while Li_(2)S on non-electrocatalytic surface is amorphous and irregular.Further characterization indicates the crystalline Li_(2)S preferentially participates in the discharge/charge process to render reduced interfacial resistance,high sulfur utilization,and activated sulfur redox reactions.Consequently,crystalline Li_(2)S is proposed with thermodynamic and kinetic advantages to rati on alize the superior performances of Li-S batteries.The evoluti on of solid Li_(2)S on electrocatalytic surface not only addresses the polysulfide electrocatalysis strategy,but also inspires further investigation into the chemistry of energy-related processes.展开更多
Lithium-sulfur(Li-S) battery is considered as a promising energy storage system to realize high energy density.Nevertheless,unstable lithium metal anode emerges as the bottleneck toward practical applications,especial...Lithium-sulfur(Li-S) battery is considered as a promising energy storage system to realize high energy density.Nevertheless,unstable lithium metal anode emerges as the bottleneck toward practical applications,especially with limited anode excess required in a working full cell.In this contribution,a mixed diisopropyl ether-based(mixed-DIPE) electrolyte was proposed to effectively protect lithium metal anode in Li-S batteries with sulfurized polyacrylonitrile(SPAN) cathodes.The mixed-DIPE electrolyte improves the compatibility to lithium metal and suppresses the dissolution of lithium polysulfides,rendering significantly improved cycling stability.Concretely,Li | Cu half-cells with the mixed-DIPE electrolyte cycled stably for 120 cycles,which is nearly five times longer than that with routine carbonate-based electrolyte.Moreover,the mixedDIPE electrolyte contributed to a doubled life span of 156 cycles at 0.5 C in Li | SPAN full cells with ultrathin 50 μm Li metal anodes compared with the routine electrolyte.This contribution affords an effective electrolyte formula for Li metal anode protection and is expected to propel the practical applications of high-energy-density Li-S batteries.展开更多
Lithium–sulfur(Li–S)batteries are highly regarded as next-generation energy storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg^(−1).However,practical high-energy-density Li–S pouch cell...Lithium–sulfur(Li–S)batteries are highly regarded as next-generation energy storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg^(−1).However,practical high-energy-density Li–S pouch cells suffer from limited cycling lifespan with rapid loss of active materials.Herein,systematic evaluation on a 400 Wh kg^(−1)Li–S pouch cell is carried out to reveal the working and failure mechanism of Li–S batteries under practical conditions.Electrode morphology,spatial distribution and species analysis of sulfur,and capacity retention of electrodes are respectively evaluated after the first cycle of discharge or charge.Considerable lithium polysulfides are found in electrolyte even at the end of discharge or charge,where the sulfur redox reactions are reversible with high capacity retention.Meanwhile,severe morphology change is identified on lithium metal anode,yet there remains substantial active lithium to support the following cycles.This work not only demonstrates unique behaviors of Li–S batteries under practical conditions,which is essential for promoting the progress of Li–S pouch cells,but also affords a systematic evaluation methodology to guide further investigation on high-energy-density Li–S batteries.展开更多
Lithium–sulfur(Li–S)batteries promise high-energy-density potential to exceed the commercialized lithiumion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides(L...Lithium–sulfur(Li–S)batteries promise high-energy-density potential to exceed the commercialized lithiumion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides(LiPSs)and Li metal anodes.Herein,a three-way electrolyte with ternary solvents is proposed to enable high-energy-density and long-cycling Li–S pouch cells.Concretely,ternary solvents composed of 1,2-dimethoxyethane,di-isopropyl sulfide,and 1,3,5-trioxane are employed to guarantee smooth cathode kinetics,inhibit the parasitic reactions,and construct a robust solid electrolyte interphase,respectively.The cycling lifespan of Li–S coin cells with 50μm Li anodes and 4.0 mg cm^(−2) sulfur cathodes is prolonged from88 to 222 cycles using the three-way electrolyte.Nano-heterogeneous solvation structure of LiPSs and organic-rich solid electrolyte interphase are identified to improve the cycling stability of Li metal anodes.Consequently,a 3.0 Ah-level Li–S pouch cell with the three-way electrolyte realizes a high energy density of 405 Wh kg^(−1) and undergoes 27 cycles.Thiswork affords a three-way electrolyte recipe for suppressing the side reactions of LiPSs and inspires rational electrolyte design for practical high-energy-density and long-cycling Li–S batteries.展开更多
Single-atom catalysts serve as a promising candidate to realize noble-metal-free electrocatalytic oxygen reduction in acid media.However,their poor stability under working conditions strictly restrains their practical...Single-atom catalysts serve as a promising candidate to realize noble-metal-free electrocatalytic oxygen reduction in acid media.However,their poor stability under working conditions strictly restrains their practical applications.Therefore,regeneration of their electrocatalytic activity is of great significance.Herein,the regeneration of a Fe-N-C single-atom catalyst is demonstrated to be feasible by a facile annealing regeneration strategy.The activity after regeneration recovers to that of the pristine electrocatalyst and surpasses the deactivated electrocatalyst.The regeneration mechanism is identified to be selfetching of the surface carbon layer and consequent exposure of the previously buried single-atom sites.Furthermore,the regeneration strategy is applicable to other single-atom catalysts.This work demonstrates the feasibility of regenerating oxygen reduction electrocatalysts and affords a pioneering approach to deal with rapid deactivation under working conditions.展开更多
Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperforma...Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperformance ORR electrocatalysts are highly regarded.Despite recent progress on minimizing the ORR halfwave potential as the current evaluation indicator,in-depth quantitative kinetic analysis on overall ORR electrocatalytic performance remains insufficiently emphasized.In this paper,a quantitative kinetic analysis method is proposed to afford decoupled kinetic information from linear sweep voltammetry profiles on the basis of the Koutecky–Levich equation.Independent parameters regarding exchange current density,electron transfer number,and electrochemical active surface area can be respectively determined following the proposed method.This quantitative kinetic analysis method is expected to promote understanding of the electrocatalytic effect and point out further optimization direction for ORR electrocatalysis.展开更多
基金supported by the Russian Science Foundation as part of joint project of RSF-NSFC no.21-43-00006“Polysulfide IonSolvent Complexes and Their Electrochemical Behavior in Lithium-Sulfur Batteries”with the National Natural Science Foundation of China(22061132002)。
文摘In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes.
基金supported by the National Natural Science Foundation of China(22379121)Shenzhen Foundation Research Program(JCYJ20220530112812028)+1 种基金Fundamental Research Funds for the Central Universities(G2022KY0606)Zhejiang Province Key Laboratory of Flexible Electronics Open Fund(2023FE005)。
文摘Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batteries.In this work,the concept of concurrent hetero-/homo-geneous electrocatalysts is proposed to simultaneously mediate liquid-solid conversion of lithium polysulfides(LiPSs)and solid lithium disulfide/sulfide(Li_(2)S_(2)/Li_(2)S)propagation,the latter of which suffers from sluggish reduction kinetics due to buried conductive scaffold surface by extensive deposition of Li_(2)S_(2)/Li_(2)S.The selected model material to verify this concept is a two-in-one catalyst:carbon nanotube(CNT)scaffold supported iron-cobalt(Fe-Co)alloy nanoparticles and partially carbonized selenium(C-Se)component.The Fe-Co alloy serves as a heterogeneous electrocatalyst to seed Li_(2)S_(2)/Li_(2)S through sulphifilic active sites,while the C-Se sustainably releases soluble lithium polyselenides and functions as a homogeneous electrocatalyst to propagate Li_(2)S_(2)/Li_(2)S via solution pathways.Such bi-phasic mediation of the sulfur species benefits reduction kinetics of LiPS conversion,especially for the massive Li_(2)S_(2)/Li_(2)S growth scenario by affording an additional solution directed route in case of conductive surface being largely buried.This strategy endows the Li-S batteries with improved cycling stability(836 mA h g^(-1)after 180 cycles),rate capability(547 mA h g^(-1)at 4 C)and high sulfur loading superiority(2.96 mA h cm^(-2)at 2.4 mg cm^(-2)).This work hopes to enlighten the employment of bi-phasic electrocatalysts to dictate liquid-solid transformation of intermediates for conversion chemistry batteries.
基金supported by the National Key Research and Development Program(2021YFB2400300)National Natural Science Foundation of China(22379013 and 22209010)the Beijing Institute of Technology“Xiaomi Young Scholars”program。
文摘Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.
基金supported by the National Key Research and Development Program(2021YFB2500300,2021YFB2400300)the Natural Scientific Foundation of China(22109007)+3 种基金the Beijing Natural Science Foundation(JQ20004)the Scientific and Technological Key Project of Shanxi Province(20191102003)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘Lithium–sulfur(Li–S)batteries are considered as highly promising energy storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg^(-1).The highest practical energy density of Li–S batteries reported at pouch cell level has exceeded 500 Wh kg^(-1),which significantly surpasses that of lithium-ion batteries.Herein,a 700 Wh kg^(-1)-level Li–S pouch cell is successfully constructed.The pouch cell is designed at 6 Ah level with high-sulfur-loading cathodes of 7.4 mgScm^(-2),limited anode excess(50μm in thickness),and lean electrolyte(electrolyte to sulfur ratio of 1.7 gelectrolyteg^(-1)S).Accordingly,an ultrahigh specific capacity of 1563 m A h g^(-1)is achieved with the addition of a redox comediator to afford a practical energy density of 695 Wh kg^(-1)based on the total mass of all components.The pouch cell can operate stably for three cycles and then failed due to rapidly increased polarization at the second discharge plateau.According to failure analysis,electrolyte exhaustion is suggested as the key limiting factor.This work achieves a significant breakthrough in constructing high-energy-density Li–S batteries and propels the development of Li–S batteries toward practical working conditions.
基金supported by the Key Research and Development Program of Yunnan Province(202103A A080019)S&T Program of Hebei(22344402D)+4 种基金National Key Research and Development Program(2021YFB2400300)National Natural Science Foundation of China(22108149)China Postdoctoral Science Foundation(2021M700404)Scientific and Technological Key Project of Shanxi Province(20191102003)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘The stability of lithium metal anodes essentially dictates the lifespan of high-energy-density lithium metal batteries.Lithium nitrate(LiNO_(3))is widely recognized as an effective additive to stabilize lithium metal anodes by forming LiN_(x)O_(y)-containing solid electrolyte interphase(SEI).However,its poor solubility in electrolytes,especially ester electrolytes,hinders its applications in lithium metal batteries.Herein,an organic nitrate,isosorbide nitrate(ISDN),is proposed to replace LiNO_(3).ISDNhas a high solubility of 3.3M in ester electrolytes due to the introduction of organic segments in the molecule.The decomposition of ISDN generates LiN_(x)O_(y)-rich SEI,enabling uniform lithium deposition.The lifespan of lithium metal batteries with ISDN significantly increases from 80 to 155 cycles under demanding conditions.Furthermore,a lithium metal pouch cell of 439Whkg^(−1) delivers 50 cycles.This work opens a new avenue to develop additives by molecular modifications for practical lithium metal batteries.
基金supported by the National Key Research and Development Program(2021YFB2400300)the Beijing Natural Science Foundation(JQ20004)+1 种基金the National Natural Science Foundation of China(22109007,22109011)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Lithium-sulfur(Li-S)batteries have attracted extensive attention due to ultrahigh theoretical energy density of 2600 Wh kg^(-1).Liquid-solid deposition from dissolved lithium polysulfides(LiPSs)to solid lithium sulfide(Li_(2)S)largely determines the actual battery performances.Herein,a premature liquidsolid deposition process of LiPSs is revealed at higher thermodynamic potential than Li_(2)S deposition in Li-S batteries.The premature solid deposit exhibits higher chemical state and hemispherical morphology in comparison with Li_(2)S,and the premature deposition process is slower in kinetics and higher in deposition dimension.Accordingly,a supersaturation deposition mechanism is proposed to rationalize the above findings based on thermodynamic simulation.This work demonstrates a unique premature liquid-solid deposition process of Li-S batteries.
基金This work was supported by the National Natural Science Foundation of China(22279008 and 22109082)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the National Natural Science Foundation of China(21776019,21805162,51772069,and U1801257)+1 种基金China Postdoctoral Science Foundation(2018M630165)Beijing Key Research and Development Plan(Z181100004518001)
文摘Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery.
基金supported by the Beijing Natural Science Foundation(JQ20004,L182021)the National Natural Science Foundation of China(21808124)the National Key Research and Development Program(2016YFA0202500)。
文摘Solid electrolyte interphase(SEI)has been widely recognized as the most important and the least understood component in lithium batteries.Considering the intrinsic instability in both chemical and mechanical,the failure of SEI is inevitable and strongly associated with the performance decay of practical working batteries.In this Review,the failure mechanisms and the corresponding regulation strategies of SEI are focused.Firstly,the fundamental properties of SEI,including the formation principles,and the typical composition and structures are briefly introduced.Moreover,the common SEI failure modes involving thermal failure,chemical failure,and mechanical failure are classified and discussed,respectively.Beyond that,the regulation strategies of SEI with respect to different failure modes are further concluded.Finally,the future endeavor in further disclosing the mysteries of SEI is prospected.
基金supported by Scientific and Technological Key Project of Shanxi Province(20191102003)National Key Research and Development Program(2016YFA0202500)+1 种基金the National Natural Science Foundation of China(21776019)Beijing Natural Science Foundation(L182021)。
文摘Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.
基金financial support through the StartUp Fund for Outstanding Talent with grant number A1098531023601307the National University of Singapore and Ministry of Education in Singapore for its financial support through Tier-1 projects with grant numbers R-279000-622-133 and R-279-000-622-731.
文摘Electrocatalytic carb on dioxide reducti on(CO_(2)R)presents a promising route to establish zero-e mission carb on cycle and store in termittent ren ewable energy into chemical fuels for steady energy supply.Methanol is an ideal energy carrier as alternative fuels and one of the most important commodity chemicals.Nevertheless,methanol is currently mainly produced from fossil-based syngas,the production of which yields tremendous carb on emission globally.Direct CO_(2)R towards metha nol poses great potential to shift the paradigm of methanol production.In this perspective,we focus our discussions on producing methanol from electrochemical CO_(2)R,using metallomacrocyclic molecules as the model catalysts.We discuss the motivation of having methanol as the sole CO_(2)R product,the documented application of metallomacrocyclic catalysts for CO_(2)R,and recent advance in catalyzing CO_(2) to methanol with cobalt phthalocyanine-based catalysts.We attempt to understand the key factors in determining the activity,selectivity,and stability of electrocatalytic CO_(2)-to-methanol conversion,and to draw mechanistic insights from existing observations.Finally,we identify the challenges hindering methanol electrosynthesis directly from CO_(2) and some intriguing directions worthy of further investigation and exploration.
基金supported by the National Key Research and Development Program (2016YFA0202500 and 2016YFA0200102)the National Natural Science Foundation of China (21676160, 21825501, and U1801257)Tsinghua University Initiative Scientific Research Program。
文摘In the light of wireless and non-fossil society based on portable electronics, electric vehicles, and smart grids, secondary batteries with higher energy density, faster charge, and safer operation are pursued persistently [1]. Nowadays, commercial lithium(Li)-ion batteries have been practically applied in our daily life. However,the energy density of Li-ion batteries based on intercalation chemistry is approaching to the theoretical value due to the limited specific capacity of graphite anode(372 mA h g-1) [2].
基金supported by the Beijing Municipal Natural Science Foundation (Z20J00043)the National Natural Science Foundation of China (22061132002, 21825501)+4 种基金the China Postdoctoral Science Foundation (2021M700404)the Seed Fund of Shanxi Research Institute for Clean Energy (SXKYJF015)the Beijing Municipal Natural Science Foundation (JQ20004, L182021)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for interfacial stabilization are particularly indistinct. Herein, the effect of various sulfur-containing components in SEI for stabilizing lithium metal anodes is disclosed in lithium–sulfur batteries. High-valence sulfur-containing species(Li_(2)SO_(3) and Li_(2)SO_(4)) in SEI are conducive to uniform lithium deposition and stabilizing lithium metal anodes. In contrast, low-valence sulfur-containing species(Li_(2)S_(3) and Li_(2)S_(4)) in SEI result in aggressive lithium dendrites and dead lithium. This work identifies the role of sulfurcontaining components in SEI for stabilizing lithium metal anodes and provides rational design principles of SEI for protecting lithium metal anodes in practical lithium–sulfur batteries.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the National Natural Scientific Foundation of China(21676160,21825501,and U1801257)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electrocatalytic surface is the first step to rationally introduce polysulfide electrocatalysts for kinetic promotion in a working battery.Herein,crystalline lithium sulfide(Li_(2)S)is exclusively observed on electrocatalytic surface with uniform spherical morphology while Li_(2)S on non-electrocatalytic surface is amorphous and irregular.Further characterization indicates the crystalline Li_(2)S preferentially participates in the discharge/charge process to render reduced interfacial resistance,high sulfur utilization,and activated sulfur redox reactions.Consequently,crystalline Li_(2)S is proposed with thermodynamic and kinetic advantages to rati on alize the superior performances of Li-S batteries.The evoluti on of solid Li_(2)S on electrocatalytic surface not only addresses the polysulfide electrocatalysis strategy,but also inspires further investigation into the chemistry of energy-related processes.
基金supported by National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)National Natural Science Foundation of China(21776019,21825501,and U1801257)the Tsinghua University Initiative Scientific Research Program
文摘Lithium-sulfur(Li-S) battery is considered as a promising energy storage system to realize high energy density.Nevertheless,unstable lithium metal anode emerges as the bottleneck toward practical applications,especially with limited anode excess required in a working full cell.In this contribution,a mixed diisopropyl ether-based(mixed-DIPE) electrolyte was proposed to effectively protect lithium metal anode in Li-S batteries with sulfurized polyacrylonitrile(SPAN) cathodes.The mixed-DIPE electrolyte improves the compatibility to lithium metal and suppresses the dissolution of lithium polysulfides,rendering significantly improved cycling stability.Concretely,Li | Cu half-cells with the mixed-DIPE electrolyte cycled stably for 120 cycles,which is nearly five times longer than that with routine carbonate-based electrolyte.Moreover,the mixedDIPE electrolyte contributed to a doubled life span of 156 cycles at 0.5 C in Li | SPAN full cells with ultrathin 50 μm Li metal anodes compared with the routine electrolyte.This contribution affords an effective electrolyte formula for Li metal anode protection and is expected to propel the practical applications of high-energy-density Li-S batteries.
基金supported by the Beijing Natural Science Foundation(JQ20004)National Natural Science Foundation of China(U1801257)the Scientific and Technological Key Project of Shanxi Province(20191102003)。
文摘Lithium–sulfur(Li–S)batteries are highly regarded as next-generation energy storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg^(−1).However,practical high-energy-density Li–S pouch cells suffer from limited cycling lifespan with rapid loss of active materials.Herein,systematic evaluation on a 400 Wh kg^(−1)Li–S pouch cell is carried out to reveal the working and failure mechanism of Li–S batteries under practical conditions.Electrode morphology,spatial distribution and species analysis of sulfur,and capacity retention of electrodes are respectively evaluated after the first cycle of discharge or charge.Considerable lithium polysulfides are found in electrolyte even at the end of discharge or charge,where the sulfur redox reactions are reversible with high capacity retention.Meanwhile,severe morphology change is identified on lithium metal anode,yet there remains substantial active lithium to support the following cycles.This work not only demonstrates unique behaviors of Li–S batteries under practical conditions,which is essential for promoting the progress of Li–S pouch cells,but also affords a systematic evaluation methodology to guide further investigation on high-energy-density Li–S batteries.
基金Beijing Municipal Natural Science Foundation,Grant/Award Number:Z200011National Natural Science Foundation of China,Grant/Award Numbers:22061132002,22379013,T2322015+6 种基金Seed Fund of Shanxi Research Institute for Clean Energy,Grant/Award Number:SXKYJF015S&T Program of Hebei Province,Grant/Award Number:22344402DTsinghua-Jiangyin Innovation Special Fund(TJISF)Tsinghua-Toyota Joint Research FundInstitute of Strategic Research,Huawei Technologies Co.,Ltd.Ordos-Tsinghua Innovative&Collaborative Research Program in Carbon NeutralityNational Key Research and Development Program of China,Grant/Award Numbers:2021YFB2500300,2021YFB2400300。
文摘Lithium–sulfur(Li–S)batteries promise high-energy-density potential to exceed the commercialized lithiumion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides(LiPSs)and Li metal anodes.Herein,a three-way electrolyte with ternary solvents is proposed to enable high-energy-density and long-cycling Li–S pouch cells.Concretely,ternary solvents composed of 1,2-dimethoxyethane,di-isopropyl sulfide,and 1,3,5-trioxane are employed to guarantee smooth cathode kinetics,inhibit the parasitic reactions,and construct a robust solid electrolyte interphase,respectively.The cycling lifespan of Li–S coin cells with 50μm Li anodes and 4.0 mg cm^(−2) sulfur cathodes is prolonged from88 to 222 cycles using the three-way electrolyte.Nano-heterogeneous solvation structure of LiPSs and organic-rich solid electrolyte interphase are identified to improve the cycling stability of Li metal anodes.Consequently,a 3.0 Ah-level Li–S pouch cell with the three-way electrolyte realizes a high energy density of 405 Wh kg^(−1) and undergoes 27 cycles.Thiswork affords a three-way electrolyte recipe for suppressing the side reactions of LiPSs and inspires rational electrolyte design for practical high-energy-density and long-cycling Li–S batteries.
基金supported by the National Natural Science Foundation of China(22109007 and 21825501)Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘Single-atom catalysts serve as a promising candidate to realize noble-metal-free electrocatalytic oxygen reduction in acid media.However,their poor stability under working conditions strictly restrains their practical applications.Therefore,regeneration of their electrocatalytic activity is of great significance.Herein,the regeneration of a Fe-N-C single-atom catalyst is demonstrated to be feasible by a facile annealing regeneration strategy.The activity after regeneration recovers to that of the pristine electrocatalyst and surpasses the deactivated electrocatalyst.The regeneration mechanism is identified to be selfetching of the surface carbon layer and consequent exposure of the previously buried single-atom sites.Furthermore,the regeneration strategy is applicable to other single-atom catalysts.This work demonstrates the feasibility of regenerating oxygen reduction electrocatalysts and affords a pioneering approach to deal with rapid deactivation under working conditions.
基金supported by Natural Scientific Foundati on of China (22109007)Beijing Natural Science Foundation (JQ20004)+1 种基金Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program
基金supported by Beijing Natural Science Foundation(JQ20004)National Key Research and Development Program(2016YFA0202500)Scientific and Technological Key Project of Shanxi Province(20191102003).
文摘Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperformance ORR electrocatalysts are highly regarded.Despite recent progress on minimizing the ORR halfwave potential as the current evaluation indicator,in-depth quantitative kinetic analysis on overall ORR electrocatalytic performance remains insufficiently emphasized.In this paper,a quantitative kinetic analysis method is proposed to afford decoupled kinetic information from linear sweep voltammetry profiles on the basis of the Koutecky–Levich equation.Independent parameters regarding exchange current density,electron transfer number,and electrochemical active surface area can be respectively determined following the proposed method.This quantitative kinetic analysis method is expected to promote understanding of the electrocatalytic effect and point out further optimization direction for ORR electrocatalysis.