Geodetic functional models,stochastic models,and model parameter estimation theory are fundamental for geodetic data processing.In the past five years,through the unremitting efforts of Chinese scholars in the field o...Geodetic functional models,stochastic models,and model parameter estimation theory are fundamental for geodetic data processing.In the past five years,through the unremitting efforts of Chinese scholars in the field of geodetic data processing,according to the application and practice of geodesy,they have made significant contributions in the fields of hypothesis testing theory,un-modeled error,outlier detection,and robust estimation,variance component estimation,complex least squares,and ill-posed problems treatment.Many functional models such as the nonlinear adjustment model,EIV model,and mixed additive and multiplicative random error model are also constructed and improved.Geodetic data inversion is an important part of geodetic data processing,and Chinese scholars have done a lot of work in geodetic data inversion in the past five years,such as seismic slide distribution inversion,intelligent inversion algorithm,multi-source data joint inversion,water reserve change and satellite gravity inversion.This paper introduces the achievements of Chinese scholars in the field of geodetic data processing in the past five years,analyzes the methods used by scholars and the problems solved,and looks forward to the unsolved problems in geodetic data processing and the direction that needs further research in the future.展开更多
In Global Navigation Satellite Systems (GNSS) positioning, one often tries to establish a mathematic model to capture the systematic behaviors of observations as much as possible. However, the observation residuals ...In Global Navigation Satellite Systems (GNSS) positioning, one often tries to establish a mathematic model to capture the systematic behaviors of observations as much as possible. However, the observation residuals still exhibit, to a great extent, as (somewhat systematic) signals. Nevertheless, those systematic variations are referred to as the unmodelled errors, which are difficult to be further modelled by setting up additional parameters. Different from the random errors, the unmodelled errors are colored and time correlated. In general, the larger the time correlations are, the more significant the unmodelled errors. Hence, understanding the time correlations of unmodelled errors is important to develop the theory for processing the unmodelled errors. In this study, we compare and analyze the time correlations caused by unmodelled errors of Global Positioning System (GPS) and BeiDou signals. The time correlations are estimated based on the residuals of double differenced observations on 11 baselines with different lengths. The results show that the time correlation patterns are different significantly between GPS and BeiDou observations. Besides, the code and phase data from the same satellite system are also not the same. Furthermore, the unmodelled errors are affected by not only the baseline length, but also some other factors. In addition, to make use of the time correlations with more efficiency, we propose to fit the time correlations by using exponent and quadratic models and the fitting coefficients are given. Finally, the sequential adjustment method considering the time correlations is implemented to compute the baseline solutions. The results show that the solutions considering the time correlations can objectively reflect the actual precisions of parameter estimates.展开更多
Time correlations always exist in modern geodetic data,and ignoring these time correlations will affect the precision and reliability of solutions.In this paper,several methods for processing kinematic time-correlated...Time correlations always exist in modern geodetic data,and ignoring these time correlations will affect the precision and reliability of solutions.In this paper,several methods for processing kinematic time-correlated observations are studied.Firstly,the method for processing the time-correlated observations is expanded and unified.Based on the theory of maximum a posteriori estimation,the third idea is proposed after the decorrelation transformation and differential transformation.Two types of situations with and without common parameters are both investigated by using the decorrelation transformation,differential transformation and maximum a posteriori estimation solutions.Besides,the characteristics and equivalence of above three methods are studied.Secondly,in order to balance the computational efficiency in real applications and meantime effectively capture the time correlations,the corresponding reduced forms based on the autocorrelation function are deduced.Finally,with GPS real data,the correctness and practicability of derived formulae are evaluated.展开更多
With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to impr...With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.展开更多
Dear Editor,The spread of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)led to a global pandemic with 260 million infected people.A variety of vaccines,including the mRNA and recombinant vaccines,were dev...Dear Editor,The spread of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)led to a global pandemic with 260 million infected people.A variety of vaccines,including the mRNA and recombinant vaccines,were developed to prevent the spread of the disease.1,2 There is an urgent need for testing the vaccine-induced long-term memory response based on the immunological principles and identifying the optimal combination of dose and injection manner to provide important information for clinical application.展开更多
The residual of oxidant chemicals in advanced oxidation processes(AOPs)resulted in both economic cost and secondary pollution.Herein,we report a direct oxidation of phenolic pollutants induced by Ca-Mn-O perovskites w...The residual of oxidant chemicals in advanced oxidation processes(AOPs)resulted in both economic cost and secondary pollution.Herein,we report a direct oxidation of phenolic pollutants induced by Ca-Mn-O perovskites without using an oxidant.Governed by one-electron transfer process(ETP)from the phenolics to the Ca-Mn-O perovskites,this direct oxidation proceeds in fast reaction kinetics with activation energy of 51.4 kJ/mol,which was comparable with those AOPs-based catalytic systems.Additionally,mineralization and polymerization reactions occurred on the Ca-Mn-O surface and ensured the complete removal of phenolics.The high spin state Mn(III)within Ca-Mn-O structure was the dominant active site for this ETP.The elongated axial Mn(III)–O bonds within the[MnO_(6)]octahedron facilitated the acceptance of the electrons from the phenolics and thus promoted the initiation of the direct oxidation process.Mn(III)in the high spin state can also activate dissolved O_(2)to produce singlet oxygen(^(1)O_(2))for a fast removal of phenolics.The mixed Mn(III)/Mn(IV)within Ca-Mn-O accelerated the ETP by enhancing the electrical conductivity.This efficient Ca-Mn-O-induced ETP for removal of organic contaminants casts off the dependence on external chemical and energy inputs and provides a sustainable approach for transforming the toxic organic pollutants into value-added polymers.展开更多
Real-Time Precise Point Positioning(RT-PPP)has been one of the research hotspots in GNSS(Global Navigation Satellite System)community for decades.Real-time precise products of satellite orbits and clocks are the prere...Real-Time Precise Point Positioning(RT-PPP)has been one of the research hotspots in GNSS(Global Navigation Satellite System)community for decades.Real-time precise products of satellite orbits and clocks are the prerequisite for RT-PPP.Thus,it is of great importance to investigate the current multi-GNSS real-time precise products in State Space Representation(SSR)from diferent analysis centers.In this article,SSR products from 10 analysis centers are comprehensively evaluated by comparing them with the fnal products and performing the kinematic PPP.The results show that analysis centers CNES(Centre National D’Etudes Spatiales)and WHU(GNSS Research Center of Wuhan University)provide the most complete products with the best quality.Concerning the accuracy of real-time products for the GNSSs,the accuracies of orbit and clock products are better than 5 cm and 0.15 ns,respectively,for Global Positioning System(GPS),followed by Galileo navigation satellite system(Galileo),BeiDou-3 Navigation Satellite System(BDS-3),GLObal NAvigation Satellite System(GLONASS),and BeiDou-2 Navigation Satellite System(BDS-2).Meanwhile,the results of the RT-PPP with quad-system show that the positioning accuracies are 1.76,1.12 and 2.68 cm in east,north,and up directions,respectively,and the convergence time to 0.1,0.1,0.2 m for corresponding directions is 15.35 min.展开更多
The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency ...The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency signals,which can benefit the ambiguity resolution(AR)and high-precision positioning.This paper discusses the benefits of quad-frequency observations,including the precision gain of multi-frequency high-precision positioning and the sophisticated choice of extra-wide-lane(EWL)or wide-lane(WL)combinations for instantaneous EWL/WL AR.Additionally,the performance of EWL real-time kinematic(ERTK)positioning that only uses EWL/WL combinations is investigated.The results indicate that the horizontal positioning errors of ERTK positioning using ionosphere-free(IF)EWL observations are approximately 0.5 m for the baseline of 27 km and 1 m for the baseline of 300 km.Furthermore,the positioning errors are reduced to the centimetre level if the IF EWL observations are smoothed by narrow-lane observations for a short period.展开更多
基金National Natural Science Foundation of China(No.42174011)。
文摘Geodetic functional models,stochastic models,and model parameter estimation theory are fundamental for geodetic data processing.In the past five years,through the unremitting efforts of Chinese scholars in the field of geodetic data processing,according to the application and practice of geodesy,they have made significant contributions in the fields of hypothesis testing theory,un-modeled error,outlier detection,and robust estimation,variance component estimation,complex least squares,and ill-posed problems treatment.Many functional models such as the nonlinear adjustment model,EIV model,and mixed additive and multiplicative random error model are also constructed and improved.Geodetic data inversion is an important part of geodetic data processing,and Chinese scholars have done a lot of work in geodetic data inversion in the past five years,such as seismic slide distribution inversion,intelligent inversion algorithm,multi-source data joint inversion,water reserve change and satellite gravity inversion.This paper introduces the achievements of Chinese scholars in the field of geodetic data processing in the past five years,analyzes the methods used by scholars and the problems solved,and looks forward to the unsolved problems in geodetic data processing and the direction that needs further research in the future.
基金supported by the National Natural Science Foundations of China(41574023,41622401,41374031)supported by the Fund of Youth 1000-Plan Talent Program
文摘In Global Navigation Satellite Systems (GNSS) positioning, one often tries to establish a mathematic model to capture the systematic behaviors of observations as much as possible. However, the observation residuals still exhibit, to a great extent, as (somewhat systematic) signals. Nevertheless, those systematic variations are referred to as the unmodelled errors, which are difficult to be further modelled by setting up additional parameters. Different from the random errors, the unmodelled errors are colored and time correlated. In general, the larger the time correlations are, the more significant the unmodelled errors. Hence, understanding the time correlations of unmodelled errors is important to develop the theory for processing the unmodelled errors. In this study, we compare and analyze the time correlations caused by unmodelled errors of Global Positioning System (GPS) and BeiDou signals. The time correlations are estimated based on the residuals of double differenced observations on 11 baselines with different lengths. The results show that the time correlation patterns are different significantly between GPS and BeiDou observations. Besides, the code and phase data from the same satellite system are also not the same. Furthermore, the unmodelled errors are affected by not only the baseline length, but also some other factors. In addition, to make use of the time correlations with more efficiency, we propose to fit the time correlations by using exponent and quadratic models and the fitting coefficients are given. Finally, the sequential adjustment method considering the time correlations is implemented to compute the baseline solutions. The results show that the solutions considering the time correlations can objectively reflect the actual precisions of parameter estimates.
基金The National Natural Science Foundation of China(Nos.4157403141622401)+3 种基金The Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee(Nos.1751110950117DZ110080217DZ1100902)The Fundamental Research Funds for the Central Universities(No.2019B03714)。
文摘Time correlations always exist in modern geodetic data,and ignoring these time correlations will affect the precision and reliability of solutions.In this paper,several methods for processing kinematic time-correlated observations are studied.Firstly,the method for processing the time-correlated observations is expanded and unified.Based on the theory of maximum a posteriori estimation,the third idea is proposed after the decorrelation transformation and differential transformation.Two types of situations with and without common parameters are both investigated by using the decorrelation transformation,differential transformation and maximum a posteriori estimation solutions.Besides,the characteristics and equivalence of above three methods are studied.Secondly,in order to balance the computational efficiency in real applications and meantime effectively capture the time correlations,the corresponding reduced forms based on the autocorrelation function are deduced.Finally,with GPS real data,the correctness and practicability of derived formulae are evaluated.
基金the National Natural Science Funds of China[grant numbers 41874030,42074026]Natural Science Funds of Shanghai[grant number 21ZR1465600]+3 种基金the Program of Shanghai Academic Research Leader[grant number 20XD1423800]the Innovation Program of Shanghai Municipal Education Commission[grant number 2021-01-07-00-07-E00095]the“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission[grant number 20SG18]the Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee[grant numbers 20511103302,20511103402 and 20511103702].
文摘With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.
基金the National Natural Science Foundation of China(Grant 81974258,31870731,and 31971129)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB29030104)the Fundamental Research Fund for the Central Universities(WK3520000011,WK9110000092,and EF2060030006).
文摘Dear Editor,The spread of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)led to a global pandemic with 260 million infected people.A variety of vaccines,including the mRNA and recombinant vaccines,were developed to prevent the spread of the disease.1,2 There is an urgent need for testing the vaccine-induced long-term memory response based on the immunological principles and identifying the optimal combination of dose and injection manner to provide important information for clinical application.
基金the National Natural Science Foundation of China(Nos.21978324 and 22278436)the Science Foundation of China University of Petroleum,Beijing(No.2462021QNXZ009).
文摘The residual of oxidant chemicals in advanced oxidation processes(AOPs)resulted in both economic cost and secondary pollution.Herein,we report a direct oxidation of phenolic pollutants induced by Ca-Mn-O perovskites without using an oxidant.Governed by one-electron transfer process(ETP)from the phenolics to the Ca-Mn-O perovskites,this direct oxidation proceeds in fast reaction kinetics with activation energy of 51.4 kJ/mol,which was comparable with those AOPs-based catalytic systems.Additionally,mineralization and polymerization reactions occurred on the Ca-Mn-O surface and ensured the complete removal of phenolics.The high spin state Mn(III)within Ca-Mn-O structure was the dominant active site for this ETP.The elongated axial Mn(III)–O bonds within the[MnO_(6)]octahedron facilitated the acceptance of the electrons from the phenolics and thus promoted the initiation of the direct oxidation process.Mn(III)in the high spin state can also activate dissolved O_(2)to produce singlet oxygen(^(1)O_(2))for a fast removal of phenolics.The mixed Mn(III)/Mn(IV)within Ca-Mn-O accelerated the ETP by enhancing the electrical conductivity.This efficient Ca-Mn-O-induced ETP for removal of organic contaminants casts off the dependence on external chemical and energy inputs and provides a sustainable approach for transforming the toxic organic pollutants into value-added polymers.
基金supported by the National Natural Science Funds of China(41874030,42074026,42104013)Natural Science Fund of Shanghai(21ZR1465600)+3 种基金the Program of Shanghai Academic Research Leader(20XD1423800)the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00095)the“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(20SG18)the Scientifc and Technological Innovation Plan from Shanghai Science and Technology Committee(20511103302,20511103402 and 20511103702).
文摘Real-Time Precise Point Positioning(RT-PPP)has been one of the research hotspots in GNSS(Global Navigation Satellite System)community for decades.Real-time precise products of satellite orbits and clocks are the prerequisite for RT-PPP.Thus,it is of great importance to investigate the current multi-GNSS real-time precise products in State Space Representation(SSR)from diferent analysis centers.In this article,SSR products from 10 analysis centers are comprehensively evaluated by comparing them with the fnal products and performing the kinematic PPP.The results show that analysis centers CNES(Centre National D’Etudes Spatiales)and WHU(GNSS Research Center of Wuhan University)provide the most complete products with the best quality.Concerning the accuracy of real-time products for the GNSSs,the accuracies of orbit and clock products are better than 5 cm and 0.15 ns,respectively,for Global Positioning System(GPS),followed by Galileo navigation satellite system(Galileo),BeiDou-3 Navigation Satellite System(BDS-3),GLObal NAvigation Satellite System(GLONASS),and BeiDou-2 Navigation Satellite System(BDS-2).Meanwhile,the results of the RT-PPP with quad-system show that the positioning accuracies are 1.76,1.12 and 2.68 cm in east,north,and up directions,respectively,and the convergence time to 0.1,0.1,0.2 m for corresponding directions is 15.35 min.
基金the National Natural Science Funds of China(41874030)The Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee(18511101801)+1 种基金The National Key Research and Development Program of China(2017YFA0603102)the Fundamental Research Funds for the Central Universities.
文摘The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency signals,which can benefit the ambiguity resolution(AR)and high-precision positioning.This paper discusses the benefits of quad-frequency observations,including the precision gain of multi-frequency high-precision positioning and the sophisticated choice of extra-wide-lane(EWL)or wide-lane(WL)combinations for instantaneous EWL/WL AR.Additionally,the performance of EWL real-time kinematic(ERTK)positioning that only uses EWL/WL combinations is investigated.The results indicate that the horizontal positioning errors of ERTK positioning using ionosphere-free(IF)EWL observations are approximately 0.5 m for the baseline of 27 km and 1 m for the baseline of 300 km.Furthermore,the positioning errors are reduced to the centimetre level if the IF EWL observations are smoothed by narrow-lane observations for a short period.