Inverse vulcanized polymers(IVPs) that generated from elemental sulfur and smaller amounts of alkenes have found broad promising applications such as cathode materials for Li-S batteries, dynamic and repairable materi...Inverse vulcanized polymers(IVPs) that generated from elemental sulfur and smaller amounts of alkenes have found broad promising applications such as cathode materials for Li-S batteries, dynamic and repairable materials, optics applications, and metal sorption. However, their exploration in organic synthesis is still unprecedented. Here we first report the application of inverse vulcanized polymers in catalysis for organic transformations. A biomass-derived inverse vulcanized polymer(IVP-EAE) is found to be capable of catalyzing cross-coupling reactions in a transition-metal-free fashion under visible light.This method allows the direct C–H functionalization of pyrroles and N-arylacrylamides with(hetero)aryl halides, respectively, leading to the formation of two sets of structurally important scaffolds including pyrrole-containing biaryls and 3,3-disubstituted oxindoles with high selectivity. We anticipate this study will not only unveil the new potential of IVPs, but also offer a distinct type of catalysts for organic transformations.展开更多
基金the National Natural Science Foundation of China (NSFC, Nos. 22071024, 22271047)the Natural Science Foundation of Fujian Province (Nos.2021J06020, 2022J011121)the Top-Notch Young Talents Program of China, and the Science and Technology Project of Minjiang University (No.MJY21027) for generous financial support。
文摘Inverse vulcanized polymers(IVPs) that generated from elemental sulfur and smaller amounts of alkenes have found broad promising applications such as cathode materials for Li-S batteries, dynamic and repairable materials, optics applications, and metal sorption. However, their exploration in organic synthesis is still unprecedented. Here we first report the application of inverse vulcanized polymers in catalysis for organic transformations. A biomass-derived inverse vulcanized polymer(IVP-EAE) is found to be capable of catalyzing cross-coupling reactions in a transition-metal-free fashion under visible light.This method allows the direct C–H functionalization of pyrroles and N-arylacrylamides with(hetero)aryl halides, respectively, leading to the formation of two sets of structurally important scaffolds including pyrrole-containing biaryls and 3,3-disubstituted oxindoles with high selectivity. We anticipate this study will not only unveil the new potential of IVPs, but also offer a distinct type of catalysts for organic transformations.