Two supercold waves straddling 2020 and 2021 successively hit China and caused record-breaking extremely low temperatures.In this study,the distinct features of these two supercold waves are analyzed on the medium-ran...Two supercold waves straddling 2020 and 2021 successively hit China and caused record-breaking extremely low temperatures.In this study,the distinct features of these two supercold waves are analyzed on the medium-range time scale.The blocking pattern from the Kara Sea to Lake Baikal characterized the first cold wave,while the large-scale tilted ridge and trough over the Asian continent featured the second cold wave.Prior to the cold waves,both the northwest and hyperpolar paths of cold air contributed to a zonally extensive cold air accumulation in the key region of Siberia.This might be the primary reason why strong and extensive supercold waves occur even under the Arctic amplification background.The two cold waves straddling 2020 and 2021 exhibited distinct features:(1)the blocking circulation occurred to the north or the east of the Ural Mountains and was not confined only to the Ural Mountains as it was for the earlier cold waves;(2)the collocation of the Asian blocking pattern and the polar vortex deflection towards East Asia preferred the hyperpolar path of cold air accumulation and the subsequent southward outburst;and(3)both high-and low-frequency processes worked in concert,leading to the very intense cold waves.The cold air advance along the northwest path,which coincides with the southeastward intrusion of the Siberian High(SH)front edge,is associated with the high-frequency process,while the cold air movement along the hyperpolar path,which is close to the eastern edge of the SH,is controlled by the low-frequency process.展开更多
Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms ...Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms of the two cold waves.The main results are as follows:(1)An anticlockwise turning of the transverse trough was observed in both cold waves.However,a broad ridge was maintained over the Ural area from mid-December 2020 till mid-January 2021.No breakdown or discontinuous westward shift of the blocking high was observed,which is different from typical cold waves in eastern Asia.(2)The maintenance and strengthening of northerly winds in front of the Ural high led to an increase in baroclinicity in-situ.In the downstream region,the gradient of the geopotential height contour in the south of the transverse trough rapidly increased and the advection of cold temperature consistently enhanced and advanced southwards.This in turn caused the intensification and southward expansion of the Siberian high.(3)Energy propagation of the quasi-stationary wave was a reason for the development and persistence of the Ural blocking.Prior to the occurrence of the two cold waves,the energy of the low-frequency stationary wave originating from near 0°E(or even to the west)propagated eastwards,which helped the Ural ridge intensify and maintain.Meanwhile,it also contributed to the development of the trough downstream of the ridge and resulted in the anticlockwise turning of the transverse trough,providing a favorable condition for the southward outbreak of cold air.展开更多
Contemporary references to global warming pertain to the dramatic increase in monthly global land surface temperature (GLST) anomalies since 1976. In this paper, we argue that recent global warming is primarily a resu...Contemporary references to global warming pertain to the dramatic increase in monthly global land surface temperature (GLST) anomalies since 1976. In this paper, we argue that recent global warming is primarily a result of natural causes;we have established three steps that support this viewpoint. The first is to identify periodic functions that perfectly match all of the monthly anomaly data for GLST;the second is to identify monthly sea surface temperature (SST) anomalies that are located within different ocean basin domains and highly correlated with the monthly GLST anomalies;and the third is to determine whether the dramatically increasing (or dramatically decreasing) K-line diagram signals that coincide with GLST anomalies occurred in El Niño years (or La Niña years). We have identified 15,295 periodic functions that perfectly fit the monthly GLST anomalies from 1880 to 2013 and show that the monthly SST anomalies in six domains in different oceans are highly correlated with the monthly GLST anomalies. In addition, most of the annual dramatically increasing GLST anomalies occur in El Niño years;and most of the annual dramatically decreasing GLST anomalies occur in La Niña years. These findings indicate that the “ocean stabilization machine” might represent a primary factor underlying the effect of “global warming on climate change”.展开更多
The earth-atmosphere system is an energy equilibrium system, including cooling and heating systems. The conception of “atmospheric heat engine (AH Engine)” was put forward very early in the research of heating proce...The earth-atmosphere system is an energy equilibrium system, including cooling and heating systems. The conception of “atmospheric heat engine (AH Engine)” was put forward very early in the research of heating processes. However, in the field of research on atmosphere cooling, there is no corresponding academic conception. Here we show how the atmosphere cooling engine (AC Engine) is discovered. The results show that there is a huge cooling center between the subtropical zone of northern hemispheres and the subtropical zone of southern hemispheres in the stratosphere, which is the result of AH engine. In the lower latitudes of the upper troposphere, there is an atmospheric heating belt that reaches directly to the surface of the ocean. In the global ocean surface, there are five heating centers and one cooling center, which are the results of Ocean Stabilization Machine (OSM). Therefore, there are 23 short-term global climate warming trends and 23 short-term global climate cooling trends of Global Mean Lan/Oceans Temperature Anomalies Index, which are actually the result of fluctuations of AH engine, AC engine and OSM, and how the mechanism works by AH engine, AC engine and OSM is also explained.展开更多
Damages and deaths due to a tropical cyclone (TC) can easily occur at three places belong to a TC: the small ring area (SRA) of maximum sustaining wind around TC eye, the large ring area (LRA) of the rotating wind fie...Damages and deaths due to a tropical cyclone (TC) can easily occur at three places belong to a TC: the small ring area (SRA) of maximum sustaining wind around TC eye, the large ring area (LRA) of the rotating wind field around SRA and the skin air belt (SKAB) around LRA. However, weather forecasters only use the intensity of the SRA of a TC as the proxy to gauge the whole TC intensity, which led to many “non-major” TCs proved to be “deadly” TCs. This is called as “over-generalization problem” (OGP). Here we introduce a new way to measure the intensity of a TC. After investigating 156 deadly TCs in North Atlantic, we found an important feature: 83.3% of the top 156 deadliest TCs usually made landfalls along “five major tracks”. Furthermore, we found that the new intensity of those “deadliest” TCs kept almost unchanged with the increasing of time intervals at earlier stage from the genesis points, whereas the new intensity of those “safe” TCs increased in a line with much steeper slope. Using these two features, weather forecasters can have two more options to identify those “non-major” and “deadly” TCs by SSHS in future.展开更多
基金jointly supported by the National Key Research and Development Project (Grant No. 2018YFC1505601)the National Natural Science Foundation of China (Grant No. 41975072)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA23090102).
文摘Two supercold waves straddling 2020 and 2021 successively hit China and caused record-breaking extremely low temperatures.In this study,the distinct features of these two supercold waves are analyzed on the medium-range time scale.The blocking pattern from the Kara Sea to Lake Baikal characterized the first cold wave,while the large-scale tilted ridge and trough over the Asian continent featured the second cold wave.Prior to the cold waves,both the northwest and hyperpolar paths of cold air contributed to a zonally extensive cold air accumulation in the key region of Siberia.This might be the primary reason why strong and extensive supercold waves occur even under the Arctic amplification background.The two cold waves straddling 2020 and 2021 exhibited distinct features:(1)the blocking circulation occurred to the north or the east of the Ural Mountains and was not confined only to the Ural Mountains as it was for the earlier cold waves;(2)the collocation of the Asian blocking pattern and the polar vortex deflection towards East Asia preferred the hyperpolar path of cold air accumulation and the subsequent southward outburst;and(3)both high-and low-frequency processes worked in concert,leading to the very intense cold waves.The cold air advance along the northwest path,which coincides with the southeastward intrusion of the Siberian High(SH)front edge,is associated with the high-frequency process,while the cold air movement along the hyperpolar path,which is close to the eastern edge of the SH,is controlled by the low-frequency process.
基金funded by a National Key Research and De-velopment Program Project[grant number 2018YFC1505601]National Natural Science Foundation of China[grant number 41975072]。
文摘Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms of the two cold waves.The main results are as follows:(1)An anticlockwise turning of the transverse trough was observed in both cold waves.However,a broad ridge was maintained over the Ural area from mid-December 2020 till mid-January 2021.No breakdown or discontinuous westward shift of the blocking high was observed,which is different from typical cold waves in eastern Asia.(2)The maintenance and strengthening of northerly winds in front of the Ural high led to an increase in baroclinicity in-situ.In the downstream region,the gradient of the geopotential height contour in the south of the transverse trough rapidly increased and the advection of cold temperature consistently enhanced and advanced southwards.This in turn caused the intensification and southward expansion of the Siberian high.(3)Energy propagation of the quasi-stationary wave was a reason for the development and persistence of the Ural blocking.Prior to the occurrence of the two cold waves,the energy of the low-frequency stationary wave originating from near 0°E(or even to the west)propagated eastwards,which helped the Ural ridge intensify and maintain.Meanwhile,it also contributed to the development of the trough downstream of the ridge and resulted in the anticlockwise turning of the transverse trough,providing a favorable condition for the southward outbreak of cold air.
文摘Contemporary references to global warming pertain to the dramatic increase in monthly global land surface temperature (GLST) anomalies since 1976. In this paper, we argue that recent global warming is primarily a result of natural causes;we have established three steps that support this viewpoint. The first is to identify periodic functions that perfectly match all of the monthly anomaly data for GLST;the second is to identify monthly sea surface temperature (SST) anomalies that are located within different ocean basin domains and highly correlated with the monthly GLST anomalies;and the third is to determine whether the dramatically increasing (or dramatically decreasing) K-line diagram signals that coincide with GLST anomalies occurred in El Niño years (or La Niña years). We have identified 15,295 periodic functions that perfectly fit the monthly GLST anomalies from 1880 to 2013 and show that the monthly SST anomalies in six domains in different oceans are highly correlated with the monthly GLST anomalies. In addition, most of the annual dramatically increasing GLST anomalies occur in El Niño years;and most of the annual dramatically decreasing GLST anomalies occur in La Niña years. These findings indicate that the “ocean stabilization machine” might represent a primary factor underlying the effect of “global warming on climate change”.
文摘The earth-atmosphere system is an energy equilibrium system, including cooling and heating systems. The conception of “atmospheric heat engine (AH Engine)” was put forward very early in the research of heating processes. However, in the field of research on atmosphere cooling, there is no corresponding academic conception. Here we show how the atmosphere cooling engine (AC Engine) is discovered. The results show that there is a huge cooling center between the subtropical zone of northern hemispheres and the subtropical zone of southern hemispheres in the stratosphere, which is the result of AH engine. In the lower latitudes of the upper troposphere, there is an atmospheric heating belt that reaches directly to the surface of the ocean. In the global ocean surface, there are five heating centers and one cooling center, which are the results of Ocean Stabilization Machine (OSM). Therefore, there are 23 short-term global climate warming trends and 23 short-term global climate cooling trends of Global Mean Lan/Oceans Temperature Anomalies Index, which are actually the result of fluctuations of AH engine, AC engine and OSM, and how the mechanism works by AH engine, AC engine and OSM is also explained.
文摘Damages and deaths due to a tropical cyclone (TC) can easily occur at three places belong to a TC: the small ring area (SRA) of maximum sustaining wind around TC eye, the large ring area (LRA) of the rotating wind field around SRA and the skin air belt (SKAB) around LRA. However, weather forecasters only use the intensity of the SRA of a TC as the proxy to gauge the whole TC intensity, which led to many “non-major” TCs proved to be “deadly” TCs. This is called as “over-generalization problem” (OGP). Here we introduce a new way to measure the intensity of a TC. After investigating 156 deadly TCs in North Atlantic, we found an important feature: 83.3% of the top 156 deadliest TCs usually made landfalls along “five major tracks”. Furthermore, we found that the new intensity of those “deadliest” TCs kept almost unchanged with the increasing of time intervals at earlier stage from the genesis points, whereas the new intensity of those “safe” TCs increased in a line with much steeper slope. Using these two features, weather forecasters can have two more options to identify those “non-major” and “deadly” TCs by SSHS in future.