期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multifunctional Ir–Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells
1
作者 Seung Woo lee bongho lee +2 位作者 Chaekyung Baik Tae-Yang Kim Chanho Pak 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第1期105-112,共8页
To address the problem of fuel starvation in fuel-cell electric vehicles,which causes cell voltage reversal and results in cell failure when repeated continuously,we developed a reversal-tolerant anode(RTA) to promote... To address the problem of fuel starvation in fuel-cell electric vehicles,which causes cell voltage reversal and results in cell failure when repeated continuously,we developed a reversal-tolerant anode(RTA) to promote water oxidation in preference to carbon corrosion.Graphitized carbon-supported Ir-Ru alloys with different compositions are employed as RTA catalysts in an acidic polyol solution and are shown to exhibit composition-dependent average crystallite sizes of <5.33 nm.The adopted approach allows the generation of relatively well-dispersed Ir-Ru alloy nanoparticles on the carbon support without severe agglomeration.The activity of IrRu_(2)/C for the hydrogen oxidation reaction is 1.10 times that of the stateof-the-art Pt/C catalyst.Cell reversal testing by simulation of fuel starvation reveals that the durability of IrRu_(2)/C(~7 h) significantly exceeds that of the conventional Pt/C catalyst(~10 min) and is the highest value reported so far.Thus,the developed Ir-Ru alloy catalyst can be used to fabricate practical RTAs and replace Pt catalysts in the anodes of polymer electrolyte membrane fuel cells. 展开更多
关键词 Polymer electrolyte membrane fuel cell Polyol process Reversal-tolerant anode Oxygen evolution reaction Hydrogen oxidation reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部