We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order te...We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order term of the Baker Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper paJr minimum, at low photon energy. Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom. We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing.展开更多
We develop a simple analytic calculation for the first order wave function of helium in a model in which nuclear charge screening is caused by repulsive coulomb interaction. The perturbation term, first-order correlat...We develop a simple analytic calculation for the first order wave function of helium in a model in which nuclear charge screening is caused by repulsive coulomb interaction. The perturbation term, first-order correlation energy, and first-order wave function are divided into two components, one component associated with the repulsive coulomb interaction and the other proportional to magnetic shielding. The resulting first-order wave functions are applied to calculate second-order energies within the model. We find that the second-order energies are independent of the nuclear charge screening constant in the unperturbed Hamiltonian with a central coulomb potential.展开更多
文摘We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order term of the Baker Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper paJr minimum, at low photon energy. Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom. We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing.
文摘We develop a simple analytic calculation for the first order wave function of helium in a model in which nuclear charge screening is caused by repulsive coulomb interaction. The perturbation term, first-order correlation energy, and first-order wave function are divided into two components, one component associated with the repulsive coulomb interaction and the other proportional to magnetic shielding. The resulting first-order wave functions are applied to calculate second-order energies within the model. We find that the second-order energies are independent of the nuclear charge screening constant in the unperturbed Hamiltonian with a central coulomb potential.