期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CNN coal and rock recognition method based on hyperspectral data 被引量:3
1
作者 Jianjian Yang boshen chang +3 位作者 Yuchen Zhang Wenjie Luo Shirong Ge Miao Wu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第5期59-70,共12页
Aiming at the problem of coal gangue identifcation in the current fully mechanized mining face and coal washing,this article proposed a convolution neural network(CNN)coal and rock identifcation method based on hypers... Aiming at the problem of coal gangue identifcation in the current fully mechanized mining face and coal washing,this article proposed a convolution neural network(CNN)coal and rock identifcation method based on hyperspectral data.First,coal and rock spectrum data were collected by a near-infrared spectrometer,and then four methods were used to flter 120 sets of collected data:frst-order diferential(FD),second-order diferential(SD),standard normal variable transformation(SNV),and multi-style smoothing.The coal and rock refectance spectrum data were pre-processed to enhance the intensity of spectral refectance and absorption characteristics,as well as efectively remove the spectral curve noise generated by instrument performance and environmental factors.A CNN model was constructed,and its advantages and disadvantages were judged based on the accuracy of the three parameter combinations(i.e.,the learning rate,the number of feature extraction layers,and the dropout rate)to generate the best CNN classifer for the hyperspectral data for rock recognition.The experiments show that the recognition accuracy of the one-dimensional CNN model proposed in this paper reaches 94.6%.Verifcation of the advantages and efectiveness of the method were proposed in this article. 展开更多
关键词 Hyperspectral data Data pre-processing 1D-CNN Coal gangue identifcation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部