Background Based on the seminal work proposed by Zhou et al., much of the recent progress in learning monocular visual odometry, i.e., depth and camera motion from monocular videos, can be attributed to the tricks in ...Background Based on the seminal work proposed by Zhou et al., much of the recent progress in learning monocular visual odometry, i.e., depth and camera motion from monocular videos, can be attributed to the tricks in the training procedure, such as data augmentation and learning objectives. Methods Herein, we categorize a collection of such tricks through the theoretical examination and empirical evaluation of their effects on the final accuracy of the visual odometry. Results/Conclusions By combining the aforementioned tricks, we were able to significantly improve a baseline model adapted from SfMLearner without additional inference costs. Furthermore, we analyzed the principles of these tricks and the reason for their success. Practical guidelines for future research are also presented.展开更多
C-Myc and signal transducer and activator of transcription(STAT) family proteins have been proposed to be important downstream genes of BCR-ABL, which characterizes most cases of chronic myeloid leukemia(CML). Here, w...C-Myc and signal transducer and activator of transcription(STAT) family proteins have been proposed to be important downstream genes of BCR-ABL, which characterizes most cases of chronic myeloid leukemia(CML). Here, we report a c-Myc pathway-targeted screening of seven natural anticancer compounds, in which we identified cryptotanshinone as a highly promising agent for CML therapy. Cryptotanshinone depletes c-Myc in CML by repressing the phosphorylation of STAT5.Decreased viability of K562 cells correlated with p-STAT5 suppression. Unexpectedly, imatinib activates rather than inhibits the phosphorylation of STAT3 in K562 cells. We demonstrated that cryptotanshinone, as a dual inhibitor of p-STAT5 and p-STAT3,can effectively block IL-6-mediated STAT3 activation and reverse BCR-ABL kinase-independent drug resistance. Moreover, we showed that the epigenetic rebalance between decreased BCR-ABL/STAT5/c-Myc and enhanced STAT3/multi-drug resistance(MDR) pathways is characteristic of the cancer stem cell-like property of K562/ADR. Simultaneously suppressing these two pathways using cryptotanshinone proves to be critical for the malignant network redress and MDR reversal of K562/ADR. These studies reveal the dual functions of cryptotanshinone that suppress key oncogenic proliferation and drug-resistant pathways in CML cells by targeting p-STAT5 and p-STAT3, providing a new strategy for CML therapy that takes advantage of natural products.展开更多
文摘Background Based on the seminal work proposed by Zhou et al., much of the recent progress in learning monocular visual odometry, i.e., depth and camera motion from monocular videos, can be attributed to the tricks in the training procedure, such as data augmentation and learning objectives. Methods Herein, we categorize a collection of such tricks through the theoretical examination and empirical evaluation of their effects on the final accuracy of the visual odometry. Results/Conclusions By combining the aforementioned tricks, we were able to significantly improve a baseline model adapted from SfMLearner without additional inference costs. Furthermore, we analyzed the principles of these tricks and the reason for their success. Practical guidelines for future research are also presented.
基金supported by the National Natural Science Foundation of China (31471223, 31230042, 31771459, 31770879)the Project of Science and Technology of Guangzhou (201504010022)the National Key R&D Program of China (2017YFA0504400) from the Ministry of Science and Technology of China
文摘C-Myc and signal transducer and activator of transcription(STAT) family proteins have been proposed to be important downstream genes of BCR-ABL, which characterizes most cases of chronic myeloid leukemia(CML). Here, we report a c-Myc pathway-targeted screening of seven natural anticancer compounds, in which we identified cryptotanshinone as a highly promising agent for CML therapy. Cryptotanshinone depletes c-Myc in CML by repressing the phosphorylation of STAT5.Decreased viability of K562 cells correlated with p-STAT5 suppression. Unexpectedly, imatinib activates rather than inhibits the phosphorylation of STAT3 in K562 cells. We demonstrated that cryptotanshinone, as a dual inhibitor of p-STAT5 and p-STAT3,can effectively block IL-6-mediated STAT3 activation and reverse BCR-ABL kinase-independent drug resistance. Moreover, we showed that the epigenetic rebalance between decreased BCR-ABL/STAT5/c-Myc and enhanced STAT3/multi-drug resistance(MDR) pathways is characteristic of the cancer stem cell-like property of K562/ADR. Simultaneously suppressing these two pathways using cryptotanshinone proves to be critical for the malignant network redress and MDR reversal of K562/ADR. These studies reveal the dual functions of cryptotanshinone that suppress key oncogenic proliferation and drug-resistant pathways in CML cells by targeting p-STAT5 and p-STAT3, providing a new strategy for CML therapy that takes advantage of natural products.