Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut...Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.展开更多
For a variable coefficient Kadomtsev-Petviashvili(KP)equation the Lax pair as well as conjugate Lax pair are derived from the Painleve analysis.The N-fold binary Darboux transformation is presented in a compact form.A...For a variable coefficient Kadomtsev-Petviashvili(KP)equation the Lax pair as well as conjugate Lax pair are derived from the Painleve analysis.The N-fold binary Darboux transformation is presented in a compact form.As an application,the multi-lump,higher-order lump and general lump-soliton interaction solutions for the variable coefficient KP equation are obtained.Typical lump structures with amplitudes exponentially decaying to zero as the time tends to infinity and interactions between one lump and one soliton are shown.展开更多
基金The work was supported by the National Natural Science Foundation of China(52372174)Carbon Neutrality Research Institute Fund(CNIF20230204)Special Project of Strategic Cooperation between China National Petroleum Corporation and China University of Petroleum(Beijing)(ZLZX-2020-04).
文摘Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.
基金the National Natural Science Foundation of China under Grant(11705290,11901538,11875126)the China Postdoctoral Science Foundation funded sixty-fourth batch(2018M640678)+1 种基金the Young Scholar Foundation of ZUT(2018XQG16)Training Plan for Key Young Teachers of Colleges and Universities in Henan Province(2019GGJS143)。
文摘For a variable coefficient Kadomtsev-Petviashvili(KP)equation the Lax pair as well as conjugate Lax pair are derived from the Painleve analysis.The N-fold binary Darboux transformation is presented in a compact form.As an application,the multi-lump,higher-order lump and general lump-soliton interaction solutions for the variable coefficient KP equation are obtained.Typical lump structures with amplitudes exponentially decaying to zero as the time tends to infinity and interactions between one lump and one soliton are shown.