Two-dimensional(2D)transition-metal dichalcogenide materials(TMDs)alloys have a wide range of applications in the field of optoelectronics due to their capacity to achieve wide modulation of the band gap with fully tu...Two-dimensional(2D)transition-metal dichalcogenide materials(TMDs)alloys have a wide range of applications in the field of optoelectronics due to their capacity to achieve wide modulation of the band gap with fully tunable compositions.However,it is still a challenge for growing alloys with uniform components and large lateral size due to the random distribution of the crystal nucleus locations.Here,we applied a simple but effective promoter assisted liquid phase chemical vapor deposition(CVD)method,in which the quantity ratio of promoter to metal precursor can be controlled precisely,leading to tiny amounts of transition metal oxide precursors deposition onto the substrates in a highly uniform and reproducible manner,which can effectively control the uniform distribution of element components and nucleation sites.By this method,a series of monolayer Nb_(1−x)W_(x)Se_(2)alloy films with fully tunable compositions and centimeter scale have been successfully synthesized on sapphire substrates.This controllable approach opens a new way to produce large area and uniform 2D alloy film,which has the potential for the construction of optoelectronic devices with tailored spectral responses.展开更多
Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional(2D)transition metal dichalcogenides(TMDCs).Conventional strain engineering techniques(e.g.,mechanical bending,heat...Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional(2D)transition metal dichalcogenides(TMDCs).Conventional strain engineering techniques(e.g.,mechanical bending,heating)cannot conserve strain due to their dependence on external action,which thereby limits the application in electronics.In addition,the theoretically predicted strain-induced tuning of electrical performance of TMDCs has not been experimentally proved yet.Here,a facile but effective approach is proposed to retain and tune the biaxial tensile strain in monolayer MoS_(2) by adjusting the process of the chemical vapor deposition(CVD).To prove the feasibility of this method,the strain formation model of CVD grown MoS_(2) is proposed which is supported by the calculated strain dependence of band gap via the density functional theory(DFT).Next,the electrical properties tuning of strained monolayer MoS_(2) is demonstrated in experiment,where the carrier mobility of MoS_(2) was increased by two orders(~0.15 to~23 cm^(2)·V^(−1)·s^(−1)).The proposed pathway of strain preservation and regulation will open up the optics application of strain engineering and the fabrication of high performance electronic devices in 2D materials.展开更多
基金the National Science Foundation of China(Nos.61922005 and U1930105)the Beijing Municipal Natural Science Foundation(No.JQ20027)+2 种基金The National Natural Science Foundation of China(No.62005003)The General Program of Science and Technology Development Project of Beijing Municipal Education Commission(No.KM202110005008)The Basic Research Foundation of Beijing University of Technology(No.048000546320504).
文摘Two-dimensional(2D)transition-metal dichalcogenide materials(TMDs)alloys have a wide range of applications in the field of optoelectronics due to their capacity to achieve wide modulation of the band gap with fully tunable compositions.However,it is still a challenge for growing alloys with uniform components and large lateral size due to the random distribution of the crystal nucleus locations.Here,we applied a simple but effective promoter assisted liquid phase chemical vapor deposition(CVD)method,in which the quantity ratio of promoter to metal precursor can be controlled precisely,leading to tiny amounts of transition metal oxide precursors deposition onto the substrates in a highly uniform and reproducible manner,which can effectively control the uniform distribution of element components and nucleation sites.By this method,a series of monolayer Nb_(1−x)W_(x)Se_(2)alloy films with fully tunable compositions and centimeter scale have been successfully synthesized on sapphire substrates.This controllable approach opens a new way to produce large area and uniform 2D alloy film,which has the potential for the construction of optoelectronic devices with tailored spectral responses.
基金This work was financially supported by the National Science Foundation of China(Nos.61922005,U1930105,21673054 and 11874130)Beijing Natural Science Foundation(No.JQ20027)+1 种基金the Beijing Excellent Talent Program,the Equipment Preresearch Project of China Electronics Technology Group Corporation(CETC)(No.6141B08110104)the General Program of Science and Technology Development Project of Beijing Municipal Education Commission(No.KM202010005005).
文摘Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional(2D)transition metal dichalcogenides(TMDCs).Conventional strain engineering techniques(e.g.,mechanical bending,heating)cannot conserve strain due to their dependence on external action,which thereby limits the application in electronics.In addition,the theoretically predicted strain-induced tuning of electrical performance of TMDCs has not been experimentally proved yet.Here,a facile but effective approach is proposed to retain and tune the biaxial tensile strain in monolayer MoS_(2) by adjusting the process of the chemical vapor deposition(CVD).To prove the feasibility of this method,the strain formation model of CVD grown MoS_(2) is proposed which is supported by the calculated strain dependence of band gap via the density functional theory(DFT).Next,the electrical properties tuning of strained monolayer MoS_(2) is demonstrated in experiment,where the carrier mobility of MoS_(2) was increased by two orders(~0.15 to~23 cm^(2)·V^(−1)·s^(−1)).The proposed pathway of strain preservation and regulation will open up the optics application of strain engineering and the fabrication of high performance electronic devices in 2D materials.