It was discovered the application of Al_(2)O_(3) nanofluid as lubricant for steel hot rolling could synchronously achieve oxidation protection of strips surface.The underlying mechanism was investigated through hot ro...It was discovered the application of Al_(2)O_(3) nanofluid as lubricant for steel hot rolling could synchronously achieve oxidation protection of strips surface.The underlying mechanism was investigated through hot rolling tests and molecular dynamics (MD) simulations.The employment of Al_(2)O_(3) nanoparticles contributed to significant enhancement in the lubrication performance of lubricant.The rolled strip exhibited the best surface topography that the roughness reached lowest with the sparsest surface defects.Besides,the oxide scale generated on steel surface was also thinner,and the ratio of Fe_(2)O_(3) among various iron oxides became lower.It was revealed the above oxidation protection effect of Al_(2)O_(3) nanofluid was attributed to the deposition of nanoparticles on metal surface during hot rolling.A protective layer in the thickness of about 193 nm was formed to prevent the direct contact between steel matrix and atmosphere,which was mainly composed of Al_(2)O_(3) and sintered organic molecules.MD simulations confirmed the diffusion of O_(2) and H_(2)O could be blocked by the Al_(2)O_(3) layer through physical absorption and penetration barrier effect.展开更多
Since its first report in 2009,CH_3NH_3PbI_3-based perovskite solar cells(PSCs)have emerged as one of the most exciting developments in the next generation photovoltaic(PV)technologies[1],with its PV conversion effici...Since its first report in 2009,CH_3NH_3PbI_3-based perovskite solar cells(PSCs)have emerged as one of the most exciting developments in the next generation photovoltaic(PV)technologies[1],with its PV conversion efficiency(PCE)rising spectacularly from3.81% to 22.1% in just 7 years.Such rapid advance is展开更多
Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austeni...Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austenitic stainless steel. The grain boundary characteristic distribution was obtained and characterized by electron backscatter diffraction(EBSD) analysis. The corrosion resistance of the specimens with different grain boundary characteristic distribution was examined by using potentiodynamic polarization test. The corrosion behavior of different types of boundaries after sensitization was also studied.The fraction of low-∑ boundaries decreased with increasing strain, and it was insensitive to the type of cold deformation when the engineering strain was lower than 20%. At the strain of 30%, the largest and smallest fractions of low-∑ boundaries were achieved in cold-tensioned and rolled specimens, respectively. The fraction of low-∑ boundaries increased exponentially with the increase of grain size. The proportion of low-∑ angle grain boundaries increased with decreasing grain size. Increasing the fraction of low-∑ boundaries could improve the pitting corrosion resistance for the steels with the same grain size.After sensitization, the relative corrosion resistances of low-∑ angle grain boundaries, ∑3 boundaries, and ∑9 boundaries were 100%, 95%, and 25%, respectively, while ∑27 boundaries, other low-∑ boundaries and random high-angle grain boundaries had no resistance to corrosion.展开更多
Background:The effect of arteriosclerotic intracranial arterial vessel wall enhancement(IAVWE)on downstream collateral flow found in vessel wall imaging(VWI)is not clear.Regardless of the mechanism underlying IAVWE on...Background:The effect of arteriosclerotic intracranial arterial vessel wall enhancement(IAVWE)on downstream collateral flow found in vessel wall imaging(VWI)is not clear.Regardless of the mechanism underlying IAVWE on VWI,damage to the patient’s nervous system caused by IAVWE is likely achieved by affecting downstream cerebral blood flow.The present study aimed to investigate the effect of arteriosclerotic IAVWE on downstream collateral flow.Methods:The present study recruited 63 consecutive patients at the Second Hospital of Hebei Medical University from January 2021 to November 2021 with underlying atherosclerotic diseases and unilateral middle cerebral artery(MCA)M1-segment stenosis who underwent an magnetic resonance scan within 3 days of symptom onset.The patients were divided into 4 groups according to IAVWE and the stenosis ratio(Group 1,n=17;Group 2,n=19;Group 3,n=13;Group 4,n=14),and downstream collateral flow was analyzed using three-dimensional pseudocontinuous arterial spin labeling(3D-pCASL)and RAPID software.The National Institutes of Health Stroke Scale(NIHSS)scores of the patients were also recorded.Two-factor multivariate analysis of variance using Pillai’s trace was used as the main statistical method.Results:No statistically significant difference was found in baseline demographic characteristics among the groups.IAVWE,but not the stenosis ratio,had a statistically significant significance on the late-arriving retrograde flow proportion(LARFP),hypoperfusion intensity ratio(HIR),and NIHSS scores(F=20.941,P<0.001,Pillai’s trace statistic=0.567).The between-subject effects test showed that IAVWE had a significant effect on the three dependent variables:LARFP(R^(2)=0.088,F=10.899,P=0.002),HIR(R^(2)=0.234,F=29.354,P<0.001),and NIHSS(R^(2)=114.339,F=33.338,P<0.001).Conclusions:Arteriosclerotic IAVWE significantly reduced downstream collateral flow and affected relevant neurological deficits.It was an independent factor affecting downstream collateral flow and NIHSS scores,which should be a focus of future studies.Trial Registration:ChiCTR.org.cn,ChiCTR2100053661.展开更多
Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage...Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage or current density,limiting their efficiency.In this work,we report a strategy of using single-layer perovskite quantum dots(QDs)film to tackle the electroluminescence spectra shift in pure-blue perovskite LEDs and improve the LED efficiency by co-doping copper and potassium in the mixed-halide perovskite QDs.As a result,we obtained pure-blue halide perovskite QD-LEDs with stable EL spectra centred at 469 nm even at a current density of 1,617 mA·cm^(−2).The optimal device presents a maximum external quantum efficiency(EQE)of 2.0%.The average maximum EQE and luminance of the LEDs are 1.49%and 393 cd·m^(−2),increasing 62%and 66%compared with the control LEDs.Our study provides an effective strategy for achieving spectra-stable and highly efficient pure-blue perovskite LEDs.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51874036)National Key Research and Development Program of China(No.2021YFB3701305)。
文摘It was discovered the application of Al_(2)O_(3) nanofluid as lubricant for steel hot rolling could synchronously achieve oxidation protection of strips surface.The underlying mechanism was investigated through hot rolling tests and molecular dynamics (MD) simulations.The employment of Al_(2)O_(3) nanoparticles contributed to significant enhancement in the lubrication performance of lubricant.The rolled strip exhibited the best surface topography that the roughness reached lowest with the sparsest surface defects.Besides,the oxide scale generated on steel surface was also thinner,and the ratio of Fe_(2)O_(3) among various iron oxides became lower.It was revealed the above oxidation protection effect of Al_(2)O_(3) nanofluid was attributed to the deposition of nanoparticles on metal surface during hot rolling.A protective layer in the thickness of about 193 nm was formed to prevent the direct contact between steel matrix and atmosphere,which was mainly composed of Al_(2)O_(3) and sintered organic molecules.MD simulations confirmed the diffusion of O_(2) and H_(2)O could be blocked by the Al_(2)O_(3) layer through physical absorption and penetration barrier effect.
基金supported by the National Key Research and Development Program of China(2016YFA0201001,2016YFA0300804)the National Natural Science Foundation of China(11627801,51102172,51672007,51502007,11772207)+4 种基金the Leading Talents Program of Guangdong Province(2016LJ06C372)Shenzhen Science and Technology Innovation Committee(JCYJ20170307165905513,JCYJ20170413152832151)the Natural Science Foundation for Outstanding Young Researcher in Hebei Province(E2016210093)the Key Program of Educational Commission of Hebei Province of China(ZD2016022)the Youth Top-notch Talents Supporting Plan of Hebei Province
文摘Since its first report in 2009,CH_3NH_3PbI_3-based perovskite solar cells(PSCs)have emerged as one of the most exciting developments in the next generation photovoltaic(PV)technologies[1],with its PV conversion efficiency(PCE)rising spectacularly from3.81% to 22.1% in just 7 years.Such rapid advance is
基金the financial supports from the National Natural Science Foundation of China (No.51505416)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province (No.E2017203041)+1 种基金the Post-Doctoral Research Project of Hebei Province (No.B2016003029)the Foundation for Young Scholars in Yanshan University(No.14LGA004)
文摘Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austenitic stainless steel. The grain boundary characteristic distribution was obtained and characterized by electron backscatter diffraction(EBSD) analysis. The corrosion resistance of the specimens with different grain boundary characteristic distribution was examined by using potentiodynamic polarization test. The corrosion behavior of different types of boundaries after sensitization was also studied.The fraction of low-∑ boundaries decreased with increasing strain, and it was insensitive to the type of cold deformation when the engineering strain was lower than 20%. At the strain of 30%, the largest and smallest fractions of low-∑ boundaries were achieved in cold-tensioned and rolled specimens, respectively. The fraction of low-∑ boundaries increased exponentially with the increase of grain size. The proportion of low-∑ angle grain boundaries increased with decreasing grain size. Increasing the fraction of low-∑ boundaries could improve the pitting corrosion resistance for the steels with the same grain size.After sensitization, the relative corrosion resistances of low-∑ angle grain boundaries, ∑3 boundaries, and ∑9 boundaries were 100%, 95%, and 25%, respectively, while ∑27 boundaries, other low-∑ boundaries and random high-angle grain boundaries had no resistance to corrosion.
基金Beijing Scholar 2015(No.2015-160)Health Commission of Hebei Province(No.20200919)Scientific Research Fund Project of the Second Hospital of Hebei Medical University(No.2HC202056)
文摘Background:The effect of arteriosclerotic intracranial arterial vessel wall enhancement(IAVWE)on downstream collateral flow found in vessel wall imaging(VWI)is not clear.Regardless of the mechanism underlying IAVWE on VWI,damage to the patient’s nervous system caused by IAVWE is likely achieved by affecting downstream cerebral blood flow.The present study aimed to investigate the effect of arteriosclerotic IAVWE on downstream collateral flow.Methods:The present study recruited 63 consecutive patients at the Second Hospital of Hebei Medical University from January 2021 to November 2021 with underlying atherosclerotic diseases and unilateral middle cerebral artery(MCA)M1-segment stenosis who underwent an magnetic resonance scan within 3 days of symptom onset.The patients were divided into 4 groups according to IAVWE and the stenosis ratio(Group 1,n=17;Group 2,n=19;Group 3,n=13;Group 4,n=14),and downstream collateral flow was analyzed using three-dimensional pseudocontinuous arterial spin labeling(3D-pCASL)and RAPID software.The National Institutes of Health Stroke Scale(NIHSS)scores of the patients were also recorded.Two-factor multivariate analysis of variance using Pillai’s trace was used as the main statistical method.Results:No statistically significant difference was found in baseline demographic characteristics among the groups.IAVWE,but not the stenosis ratio,had a statistically significant significance on the late-arriving retrograde flow proportion(LARFP),hypoperfusion intensity ratio(HIR),and NIHSS scores(F=20.941,P<0.001,Pillai’s trace statistic=0.567).The between-subject effects test showed that IAVWE had a significant effect on the three dependent variables:LARFP(R^(2)=0.088,F=10.899,P=0.002),HIR(R^(2)=0.234,F=29.354,P<0.001),and NIHSS(R^(2)=114.339,F=33.338,P<0.001).Conclusions:Arteriosclerotic IAVWE significantly reduced downstream collateral flow and affected relevant neurological deficits.It was an independent factor affecting downstream collateral flow and NIHSS scores,which should be a focus of future studies.Trial Registration:ChiCTR.org.cn,ChiCTR2100053661.
基金the National Natural Science Foundation of China(Nos.52102188 and 52072337)the Key Research and Development Program of Zhejiang Province(No.2021C01030)+4 种基金the Natural Science Foundation of Zhejiang Province(No.LQ21F040005)the Postdoctoral Science Foundation of Zhejiang Province(No.ZJ2022132)the Science and Technology Project of Wenzhou(No.2022G0253)the Leading Talent Entrepreneurship Project of Ouhai District,Wenzhou City,the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210444)the Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZ‐TD004).
文摘Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage or current density,limiting their efficiency.In this work,we report a strategy of using single-layer perovskite quantum dots(QDs)film to tackle the electroluminescence spectra shift in pure-blue perovskite LEDs and improve the LED efficiency by co-doping copper and potassium in the mixed-halide perovskite QDs.As a result,we obtained pure-blue halide perovskite QD-LEDs with stable EL spectra centred at 469 nm even at a current density of 1,617 mA·cm^(−2).The optimal device presents a maximum external quantum efficiency(EQE)of 2.0%.The average maximum EQE and luminance of the LEDs are 1.49%and 393 cd·m^(−2),increasing 62%and 66%compared with the control LEDs.Our study provides an effective strategy for achieving spectra-stable and highly efficient pure-blue perovskite LEDs.