Atomic layer deposition(ALD)can synthesise materials with atomic-scale precision.The ability to tune the material composition,film thickness with excellent conformality,allow low-temperature processing,and in-situ rea...Atomic layer deposition(ALD)can synthesise materials with atomic-scale precision.The ability to tune the material composition,film thickness with excellent conformality,allow low-temperature processing,and in-situ real-time monitoring makes this technique very appealing for a wide range of applications.In this review,we focus on the application of ALD layers in a wide range of solar cells.We focus on industrial silicon,thin film,organic and quantum dot solar cells.It is shown that the merits of ALD have already been exploited in a wide range of solar cells at the lab scale and that ALD is already applied in high-volume manufacturing of silicon solar cells.展开更多
POCl3 diffusion is currently the de facto standard method for industrial n-type emitter fabrication. In this study, we present the impact of the following processing parameters on emitter formation and electrical perf...POCl3 diffusion is currently the de facto standard method for industrial n-type emitter fabrication. In this study, we present the impact of the following processing parameters on emitter formation and electrical performance: deposition gas flow ratio, drive-in tempera- ture and duration, drive-in O2 flow rate, and thermal oxidation temperature. By showing their influence on the emitter doping profile and recombination activity, we provide an overall strategy for improving industrial POCl3 tube diffused emitters.展开更多
基金Australian Renewable Energy Agency(ARENA)as part of ARENA's Research and Development Program–Solar PV Research(Grant 2017/RND007)the Qatar National Research Fund(a member of Qatar Foundation,NPRP Grant#NPRP9-021-009).
文摘Atomic layer deposition(ALD)can synthesise materials with atomic-scale precision.The ability to tune the material composition,film thickness with excellent conformality,allow low-temperature processing,and in-situ real-time monitoring makes this technique very appealing for a wide range of applications.In this review,we focus on the application of ALD layers in a wide range of solar cells.We focus on industrial silicon,thin film,organic and quantum dot solar cells.It is shown that the merits of ALD have already been exploited in a wide range of solar cells at the lab scale and that ALD is already applied in high-volume manufacturing of silicon solar cells.
文摘POCl3 diffusion is currently the de facto standard method for industrial n-type emitter fabrication. In this study, we present the impact of the following processing parameters on emitter formation and electrical performance: deposition gas flow ratio, drive-in tempera- ture and duration, drive-in O2 flow rate, and thermal oxidation temperature. By showing their influence on the emitter doping profile and recombination activity, we provide an overall strategy for improving industrial POCl3 tube diffused emitters.