期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evolving concepts in bone infection: redefining “biofilm”,“acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy” 被引量:25
1
作者 Elysia A. Masters Ryan P. Trombetta +20 位作者 Karen L. de Mesy Bentley brendan f boyce Ann Lindley Gill Steven R. Gill Kohei Nishitani Masahiro Ishikawa Yugo Morita Hiromu Ito Sheila N. Bello-Irizarry Mark Ninomiya James D. Brodell Jr. Charles C. Lee Stephanie P. Hao Irvin Oh Chao Xie Hani A. Awad John L. Daiss John R. Owen Stephen L. Kates Edward M. Schwarz Gowrishankar Muthukrishnan 《Bone Research》 SCIE CAS CSCD 2019年第3期225-242,共18页
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus a... Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity,mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network(OLCN) of cortical bone. In contrast, S.aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies(MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure. 展开更多
关键词 disease caused by soft tissue NECROTIC tissuel
下载PDF
Osteoclast fusion and regulation by RANKL-dependent and independent factors 被引量:14
2
作者 Lianping Xing Yan Xiu brendan f boyce 《World Journal of Orthopedics》 2012年第12期212-222,共11页
Osteoclasts are the bone resorbing cells essential for bone remodeling.Osteoclasts are formed from hematopoietic progenitors in the monocyte/macrophage lineage.Osteoclastogenesis is composed of several steps including... Osteoclasts are the bone resorbing cells essential for bone remodeling.Osteoclasts are formed from hematopoietic progenitors in the monocyte/macrophage lineage.Osteoclastogenesis is composed of several steps including progenitor survival,differentiation to mononuclear pre-osteoclasts,fusion to multi-nuclear mature osteoclasts,and activation to bone resorbing osteoclasts.The regulation of osteoclastogenesis has been extensively studied,in which the receptor activator of NF-κB ligand(RANKL)-mediated signaling pathway and downstream transcription factors play essential roles.However,less is known about osteoclast fusion,which is a property of mature osteoclasts and is required for osteoclasts to resorb bone.Several proteins that affect cell fusion have been identified.Among them,dritic cell-specific transmembrane protein(DC-STAMP)is directly associated to osteoclast fusion in vivo.Cytokines and factors influence osteoclast fusion through regula-tion of DC-STAMP.Here we review the recently discovered new factors that regulate osteoclast fusion with specific focus on DC-STAMP.A better understanding of the mechanistic basis of osteoclast fusion will lead to the development of a new therapeutic strategy for bone disorders due to elevated osteoclast bone resorption.Cell-cell fusion is essential for a variety of cellular biological processes.In mammals,there is a limited number of cell types that fuse to form multinucleated cells,such as the fusion of myoblasts for the formation of skeletal muscle and the fusion of cells of the monocyte/macrophage lineage for the formation of multinucleated osteoclasts and giant cells.In most cases,cellcell fusion is beneficial for cells by enhancing function.Myoblast fusion increases myofiber size and diameter and thereby increases contractile strength.Multinucleated osteoclasts have far more bone resorbing activity than their mono-nuclear counterparts.Multinucleated giant cells are much more efficient in the removal of implanted materials and bacteria due to chronic infection than macrophages.Therefore,they are also called foreign-body giant cells.Cell fusion is a complicated process involving cell migration,chemotaxis,cell-cell recognition and attachment,as well as changes into a fusion-competent status.All of these steps are regulated by multiple factors.In this review,we will discuss osteoclast fusion and regulation. 展开更多
关键词 OSTEOCLASTS FUSION Dritic cell-specific TRANSMEMBRANE protein Receptor ACTIVATOR of NF-κB ligand Bone RESORPTION
下载PDF
Analysis of new bone,cartilage,and fibrosis tissue in healing murine allografts using whole slide imaging and a new automated histomorphometric algorithm
3
作者 Longze Zhang Martin Chang +2 位作者 Christopher A Beck Edward M Schwarz brendan f boyce 《Bone Research》 SCIE CAS CSCD 2015年第4期226-234,共9页
Histomorphometric analysis of histologic sections of normal and diseased bone samples,such as healing allografts and fractures,is widely used in bone research.However,the utility of traditional semi-automated methods ... Histomorphometric analysis of histologic sections of normal and diseased bone samples,such as healing allografts and fractures,is widely used in bone research.However,the utility of traditional semi-automated methods is limited because they are labor-intensive and can have high interobserver variability depending upon the parameters being assessed,and primary data cannot be re-analyzed automatically.Automated histomorphometry has long been recognized as a solution for these issues,and recently has become more feasible with the development of digital whole slide imaging and computerized image analysis systems that can interact with digital slides.Here,we describe the development and validation of an automated application(algorithm)using Visiopharm's image analysis system to quantify newly formed bone,cartilage,and fibrous tissue in healing murine femoral allografts in high-quality digital images of H&E/alcian blue-stained decalcified histologic sections.To validate this algorithm,we compared the results obtained independently using OsteoMeasureTM and Visiopharm image analysis systems.The intraclass correlation coefficient between Visiopharm and OsteoMeasure was very close to one for all tissue elements tested,indicating nearly perfect reproducibility across methods.This new algorithm represents an accurate and labor-efficient method to quantify bone,cartilage,and fibrous tissue in healing mouse allografts. 展开更多
关键词 cartilage slide automated healing fibrous Figure automatically sections segmentation quantify
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部