The daily median ground surface flux densities per day from a continuously operating photomultiplier tube unit for four years in Sudbury, Ontario are presented for December 2010 to December 2014. Increases of about 2 ...The daily median ground surface flux densities per day from a continuously operating photomultiplier tube unit for four years in Sudbury, Ontario are presented for December 2010 to December 2014. Increases of about 2 to 4 PMT units (1 unit = 5 × 10-11 W·m-2) for median daily measures reliably occurred about two weeks before M ≥ 7.7 earthquakes anywhere on the planet. The PMT units, until June 2014, usually returned to baseline within a few days after the events. There has been a slow positive drift in flux power density since about 2012 and a conspicuous maintained increase after May, 2014. The equivalent energy per day if it were represented isotropically within the volume occupied by the earth is the same order of magnitude as the average daily global total seismic energy release. Spectral power densities revealed enhanced peaks (periodicities) between 100 to 150 days, 60 days, 30 days, and 25 days. Discriminable peaks in power were noted around 18 days, 14 days, and 4 to 6 days. These results suggest that continuous measurement of photonemissions within hyper-dark conditions may reveal geophysical processes that precede larger seismic events and could reflect the movement of the earth-solar system around the galactic center.展开更多
文摘The daily median ground surface flux densities per day from a continuously operating photomultiplier tube unit for four years in Sudbury, Ontario are presented for December 2010 to December 2014. Increases of about 2 to 4 PMT units (1 unit = 5 × 10-11 W·m-2) for median daily measures reliably occurred about two weeks before M ≥ 7.7 earthquakes anywhere on the planet. The PMT units, until June 2014, usually returned to baseline within a few days after the events. There has been a slow positive drift in flux power density since about 2012 and a conspicuous maintained increase after May, 2014. The equivalent energy per day if it were represented isotropically within the volume occupied by the earth is the same order of magnitude as the average daily global total seismic energy release. Spectral power densities revealed enhanced peaks (periodicities) between 100 to 150 days, 60 days, 30 days, and 25 days. Discriminable peaks in power were noted around 18 days, 14 days, and 4 to 6 days. These results suggest that continuous measurement of photonemissions within hyper-dark conditions may reveal geophysical processes that precede larger seismic events and could reflect the movement of the earth-solar system around the galactic center.