Currently, the IT-support for energy performance rating of buildings is insufficient. So-called IT-platforms often 'built' of an ad-hoc, inconsistent combination of off-the-shelf building management compo-nent...Currently, the IT-support for energy performance rating of buildings is insufficient. So-called IT-platforms often 'built' of an ad-hoc, inconsistent combination of off-the-shelf building management compo-nents, distributed data metering equipment and several monitoring software tools. A promising approach to achieve consistent, holistic performance data management is the implementation of an integrated, modular wireless sensor platform. This paper presents an approach of how wireless sensors can be seamlessly integrated into existing and future intelligent building management systems supporting improved building performance and diagnostics with an emphasis on energy management.展开更多
A hybrid methodology is proposed for use in low power, safety critical wireless sensor network applications, where quality-of-service orientated transceiver output power control is required to operate in parallel with...A hybrid methodology is proposed for use in low power, safety critical wireless sensor network applications, where quality-of-service orientated transceiver output power control is required to operate in parallel with radio frequency-based localization. The practical implementation is framed in an experimental procedure designed to track a moving agent in a realistic indoor environment. An adaptive time synchronized approach is employed to ensure the positioning technique can operate effectively in the presence of dataloss and where the transmitter output power of the mobile agent is varying due to power control. A deterministic multilateration-based positioning approach is adopted and accuracy is improved by filtering signal strength measurements overtime to account for multipath fading. The location estimate is arrived at by employing least-squares estimation. Power control is implemented at two separate levels in the network topology. First, power control is applied to the uplink between the tracking reference nodes and the centralized access point. A number of algorithms are implemented highlighting the advantage associated with using additional feedback bandwidth, where available, and also the need for effective time delay compensation. The second layer of power control is implemented on the uplink between the mobile agent and the access point and here quantifiable improvements in quality of service and energy efficiency are observed. The hybrid paradigm is extensively tested experimentally on a fully compliant 802.15.4 testbed, where mobility is considered in the problem formulation using a team of fully autonomous robots.展开更多
基金Enterprise Ireland (http://www.buildwise.ie). Research is supported by the BuildWise Industry Advisory Group
文摘Currently, the IT-support for energy performance rating of buildings is insufficient. So-called IT-platforms often 'built' of an ad-hoc, inconsistent combination of off-the-shelf building management compo-nents, distributed data metering equipment and several monitoring software tools. A promising approach to achieve consistent, holistic performance data management is the implementation of an integrated, modular wireless sensor platform. This paper presents an approach of how wireless sensors can be seamlessly integrated into existing and future intelligent building management systems supporting improved building performance and diagnostics with an emphasis on energy management.
基金Tyndall is a part of the CLARITY CSET supported by Science Foundation Ireland (No. 07/CE/I1147)
文摘A hybrid methodology is proposed for use in low power, safety critical wireless sensor network applications, where quality-of-service orientated transceiver output power control is required to operate in parallel with radio frequency-based localization. The practical implementation is framed in an experimental procedure designed to track a moving agent in a realistic indoor environment. An adaptive time synchronized approach is employed to ensure the positioning technique can operate effectively in the presence of dataloss and where the transmitter output power of the mobile agent is varying due to power control. A deterministic multilateration-based positioning approach is adopted and accuracy is improved by filtering signal strength measurements overtime to account for multipath fading. The location estimate is arrived at by employing least-squares estimation. Power control is implemented at two separate levels in the network topology. First, power control is applied to the uplink between the tracking reference nodes and the centralized access point. A number of algorithms are implemented highlighting the advantage associated with using additional feedback bandwidth, where available, and also the need for effective time delay compensation. The second layer of power control is implemented on the uplink between the mobile agent and the access point and here quantifiable improvements in quality of service and energy efficiency are observed. The hybrid paradigm is extensively tested experimentally on a fully compliant 802.15.4 testbed, where mobility is considered in the problem formulation using a team of fully autonomous robots.