期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preface to the Special Issue on Semiconductor Optoelectronic Integrated Circuits
1
作者 Wei Wang Lingjuan Zhao +4 位作者 Dan Lu Jianping Yao Weiping Huang Yong Liu brent little 《Journal of Semiconductors》 EI CAS CSCD 2021年第4期1-2,共2页
The past 20 years have witnessed the rapid growth of photonic integration circuits(PIC)technology,which has been warmly embraced by both academia and the industry.Powered by the advanced development in material growth... The past 20 years have witnessed the rapid growth of photonic integration circuits(PIC)technology,which has been warmly embraced by both academia and the industry.Powered by the advanced development in material growth,processing,and design capability,the PIC technology now covers multiple material platforms,including III–V(InP,GaAs),silicon,silica,lithium niobate on insulator(LNOI)polymer,etc.The integration level has evolved from a single functional device to thousands of components on-chip.The increase in the performance and the complexity of the PICs have become an energetic booster for communication and information technology. 展开更多
关键词 INTEGRATION LITHIUM SILICA
下载PDF
On-chip frequency combs and telecommunications signal processing meet quantum optics
2
作者 Christian REIMER Yanbing ZHANG +13 位作者 Piotr ROZTOCKI Stefania SCIARA Luis Romero CORTES Mehedi ISLAM Bennet FISCHER Benjamin WETZEL Alfonso Carmelo CINO Sai Tak CHU brent little David MOSS Lucia CASPANI Jose AZANA Michael KUES Roberto MORANDOTTI 《Frontiers of Optoelectronics》 EI CSCD 2018年第2期134-147,共14页
Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantu... Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost- efficient generation and processing of optical quantum states. Despite significant advances, most on-chip non- classical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach beating large potential is the use of the time or frequency domain to enabled the scalable on- chip generation of complex states. In this manuscript, we review recent efforts in using on-chip optical frequency combs for quantum state generation and telecommunica- tions components for their coherent control. In particular, the generation of bi- and multi-photon entangled qubit states has been demonstrated, based on a discrete time domain approach. Moreover, the on-chip generation of high-dimensional entangled states (quDits) has recentlybeen realized, wherein the photons are created in a coherent superposition of multiple pure frequency modes. The time- and frequency-domain states formed with on-chip frequency comb sources were coherently manipulated via off-the-shelf telecommunications compo- nents. Our results suggest that microcavity-based entangled photon states and their coherent control using accessible telecommunication infrastructures can open up new venues for scalable quantum information science. 展开更多
关键词 nonlinear optics quantum optics entangledphotons
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部