期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Estimation of Land Surface Temperature from Landsat-8 OLI Thermal Infrared Satellite Data. A Comparative Analysis of Two Cities in Ghana 被引量:2
1
作者 Yaw A. Twumasi Edmund C. merem +15 位作者 John B. Namwamba Olipa S. mwakimi Tomas Ayala-Silva Diana B. Frimpong Zhu H. Ning Abena B. Asare-Ansah Jacob B. Annan Judith Oppong Priscilla m. Loh Faustina Owusu Valentine Jeruto brilliant m. petja Ronald Okwemba Joyce mcClendon-Peralta Caroline O. Akinrinwoye Hermeshia J. mosby 《Advances in Remote Sensing》 2021年第4期131-149,共19页
This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 mill... This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span> 展开更多
关键词 Remote Sensing Land Surface Temperature (LST) Atmospheric Spectral Radiance Normalized Difference Vegetation Index (NDVI) Land Surface Emissivity (LSE) Landsat 8 Satellite Ghana
下载PDF
Time Series Analysis on Selected Rainfall Stations Data in Louisiana Using ARIMA Approach 被引量:2
2
作者 Yaw A. Twumasi Jacob B. Annan +15 位作者 Edmund C. merem John B. Namwamba Tomas Ayala-Silva Zhu H. Ning Abena B. Asare-Ansah Judith Oppong Diana B. Frimpong Priscilla m. Loh Faustina Owusu Lucinda A. Kangwana Olipa S. mwakimi brilliant m. petja Ronald Okwemba Caroline O. Akinrinwoye Hermeshia J. mosby Joyce mcClendon-Peralta 《Open Journal of Statistics》 2021年第5期655-672,共18页
Precipitation is very important for both the environment and its inhabitants. Agricultural activities mostly depend on precipitation and its availability. Therefore, the ability to predict future precipitation values ... Precipitation is very important for both the environment and its inhabitants. Agricultural activities mostly depend on precipitation and its availability. Therefore, the ability to predict future precipitation values at specific stations is key for environmental and agricultural decision making. This research developed Autoregressive Integrated Moving Average (ARIMA) models for selected stations with Integrated component and Autoregressive Moving Average (ARMA) for selected stations without Integrated component at Louisiana State. The ARIMA module is represented as ARIMA(p, d, q)(P,D,Q). The selected lag order for the Autoregressive (AR) component is represented with p and P for seasonal AR component, while the integrated form (number of times data were differenced) is d and D for seasonal differencing, and the Moving Average (MA) lag order is q and Q for seasonal MA component. Data from 1950 to 2020 were employed in this research. Results of the analysis indicated that Baton Rouge (ARIMA (0,1,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Abbeville (ARMA (0,0,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Monroe Regional (ARMA (0,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Airport (ARMA (1,0,0) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Alexandria (ARMA (1,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Logansport (ARIMA (0,1,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Audubon (ARMA (1,0,0) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Lake Charles Airport (ARMA (2,0,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">) are the best ARIMA models for predicting precipitation in Louisiana. The models were used to predict the average monthly rainfall at each station. The highest precipitation observed in Louisiana was recorded in 1991. The Precipitation in Louisiana fluctuated over the years but has adopted a decreasing trend from the year 2000 to 2020. It was recommended that the government, researchers, and individuals take note of these models to make future plans to help increase the production of agricultural commodities and prevent destructions caused by excessive precipitation. 展开更多
关键词 PRECIPITATION ARIMA Models Time Series Lowess LOUISIANA
下载PDF
Flood Mapping in Mozambique Using Copernicus Sentinel-2 Satellite Data
3
作者 Yaw A. Twumasi Edmund C. merem +19 位作者 John B. Namwamba Abena B. Asare-Ansah Jacob B. Annan Zhu H. Ning Rechael N. D. Armah Caroline Y. Apraku Harriet B. Yeboah Julia Atayi matilda Anokye Diana B. Frimpong Ronald Okwemba Olipa S. mwakimi Judith Oppong brilliant m. petja Janeth mjema Priscilla m. Loh Lucinda A. Kangwana Valentine Jeruto Leah Wangari Njeri Joyce mcClendon-Peralta 《Advances in Remote Sensing》 2022年第3期80-105,共26页
Over the last two decades, Mozambique has experienced tremendous tropical cyclonic activities causing many flooding activities accompanied by disastrous human casualties. Studies that integrate remote sensing, elevati... Over the last two decades, Mozambique has experienced tremendous tropical cyclonic activities causing many flooding activities accompanied by disastrous human casualties. Studies that integrate remote sensing, elevation data and coupled with demographic analysis in Mozambique are very limited. This study seeks to fill the void by employing satellite data to map inundation caused by Tropical Cyclones in Mozambique. In pursuit of this objective, Sentinel-2 satellite data was obtained from the United States Geological Survey (USGS)’s Earth Explorer free Online Data Services imagery website covering the months of March 20, 2019, March 25, 2019, and April 16, 2019 for two cities, Maputo and Beira in Mozambique. The images were geometrically corrected to remove, haze, scan lines and speckles, and then referenced to Mozambique ground-based Geographic: Lat/Lon coordinate system and WGS 84 Datum. Data from twelve spectral bands of Sentinel-2 satellite, covering the visible and near infrared sections of the electromagnetic spectrum, were further used in the analysis. In addition, Normalized Difference Water Index (NDWI) within the study area was computed using the green and near infrared bands to highlight water bodies of Sentinel-2 detectors. To project and model the population of Mozambique and see the impact of cyclones on the country, demographic data covering 1980 to 2017 was obtained from the World Bank website. The Exponential Smoothing (ETS) method was adopted to forecast the population of Mozambique. Results from NDWI analysis showed that the NDWI is higher for flood areas and lower for non-flooded ones. The ETS algorithm results indicate that the population of Mozambique would nearly double by 2047. Human population along the coastal zone in the country is also on the rise exponentially. The paper concludes by outlining policy recommendations in the form of uniform distribution of economic activities across the country and prohibition of inland migration to the coastal areas where tropical cyclonic activities are very high. 展开更多
关键词 Tropical Cyclones Floods Remote Sensing NDWI Exponential Smoothing (ETS) Digital Elevation Model (DEM) Sentinel-2 Satellite Mozambique
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部