期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Artificial intelligence for geoscience:Progress,challenges,and perspectives
1
作者 Tianjie Zhao Sheng Wang +48 位作者 Chaojun Ouyang Min Chen Chenying Liu Jin Zhang Long Yu Fei Wang Yong Xie Jun Li Fang Wang Sabine Grunwald bryan mwong Fan Zhang Zhen Qian Yongjun Xu Chengqing Yu Wei Han Tao Sun Zezhi Shao Tangwen Qian Zhao Chen Jiangyuan Zeng Huai Zhang Husi Letu Bing Zhang Li Wang Lei Luo Chong Shi Hongjun Su Hongsheng Zhang Shuai Yin Ni Huang Wei Zhao Nan Li Chaolei Zheng Yang Zhou Changping Huang Defeng Feng Qingsong Xu Yan Wu Danfeng Hong Zhenyu Wang Yinyi Lin Tangtang Zhang Prashant Kumar Antonio Plaza Jocelyn Chanussot Jiabao Zhang Jiancheng Shi Lizhe Wang 《The Innovation》 EI 2024年第5期136-160,135,共26页
This paper explores the evolution of geoscientific inquiry,tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intellige... This paper explores the evolution of geoscientific inquiry,tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence(AI)and data collection techniques.Traditional models,which are grounded in physical and numerical frameworks,provide robust explanations by explicitly reconstructing underlying physical processes.However,their limitations in comprehensively capturing Earth’s complexities and uncertainties pose challenges in optimization and real-world applicability.In contrast,contemporary data-driven models,particularly those utilizing machine learning(ML)and deep learning(DL),leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge.ML techniques have shown promise in addressing Earth science-related questions.Nevertheless,challenges such as data scarcity,computational demands,data privacy concerns,and the“black-box”nature of AI models hinder their seamless integration into geoscience.The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm.These models,which incorporate domain knowledge to guide AI methodologies,demonstrate enhanced efficiency and performance with reduced training data requirements.This review provides a comprehensive overview of geoscientific research paradigms,emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience.It examines major methodologies,showcases advances in large-scale models,and discusses the challenges and prospects that will shape the future landscape of AI in geoscience.The paper outlines a dynamic field ripe with possibilities,poised to unlock new understandings of Earth’s complexities and further advance geoscience exploration. 展开更多
关键词 EARTH utilizing LANDSCAPE
原文传递
Emerging contaminants:A One Health perspective
2
作者 Fang Wang Leilei Xiang +94 位作者 Kelvin Sze-Yin Leung Martin Elsner Ying Zhang Yuming Guo Bo Pan Hongwen Sun Taicheng An Guangguo Ying bryan WBrooks Deyi Hou Damian EHelbling Jianqiang Sun Hao Qiu Timothy MVogel Wei Zhang Yanzheng Gao Myrna JSimpson Yi Luo Scott XChang Guanyong Su bryan mwong Tzung-May Fu Dong Zhu Karl JJobst Chengjun Ge Frederic Coulon Jean Damascene Harindintwali Xiankui Zeng Haijun Wang Yuhao Fu Zhong Wei Rainer Lohmann Changer Chen Yang Song Concepcion Sanchez-Cid Yu Wang Ali El-Naggar Yiming Yao Yanran Huang Japhet Cheuk-Fung Law Chenggang Gu Huizhong Shen Yanpeng Gao Chao Qin Hao Li Tong Zhang Natàlia Corcoll Min Liu Daniel SAlessi Hui Li Kristian KBrandt Yolanda Pico Cheng Gu Jianhua Guo Jianqiang Su Philippe Corvini Mao Ye Teresa Rocha-Santos Huan He Yi Yang Meiping Tong Weina Zhang Fidèle Suanon Ferdi Brahushi Zhenyu Wang Syed AHashsham Marko Virta Qingbin Yuan Gaofei Jiang Louis A.Tremblay Qingwei Bu Jichun Wu Willie Peijnenburg Edward Topp Xinde Cao Xin Jiang Minghui Zheng Taolin Zhang Yongming Luo Lizhong Zhu Xiangdong Li DamiàBarceló Jianmin Chen Baoshan Xing Wulf Amelung Zongwei Cai Ravi Naidu Qirong Shen Janusz Pawliszyn Yong-guan Zhu Andreas Schaeffer Matthias C.Rillig Fengchang Wu Gang Yu James M.Tiedje 《The Innovation》 EI 2024年第4期140-170,139,共32页
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health.Despite global efforts to mitigate legacy pollutants,the continuous introduction of new su... Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health.Despite global efforts to mitigate legacy pollutants,the continuous introduction of new substances remains a major threat to both people and the planet.In response,global initiatives are focusing on risk assessment and regulation of emerging contaminants,as demonstrated by the ongoing efforts to establish the UN’s Intergovernmental Science-Policy Panel on Chemicals,Waste,and Pollution Prevention.This review identifies the sources and impacts of emerging contaminants on planetary health,emphasizing the importance of adopting a One Health approach.Strategies for monitoring and addressing these pollutants are discussed,underscoring the need for robust and socially equitable environmental policies at both regional and international levels.Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations. 展开更多
关键词 POLLUTION PLANET CONTAMINANTS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部