A novel adsorbent based on peanut shells modified with glutaraldehyde and succinic anhydride was prepared. Factors affecting the adsorption capacity, such as the pH, temperature, adsorption time, initial cytochrome c ...A novel adsorbent based on peanut shells modified with glutaraldehyde and succinic anhydride was prepared. Factors affecting the adsorption capacity, such as the pH, temperature, adsorption time, initial cytochrome c (cyt c) concentration and NaCl ionic strength, were extensively investigated. The results showed that the maximum adsorption capacity of the modified peanut shells (MPSs) was 432.6 mg/g when 10 mL of cyt c solution was adsorbed by 20 mg of MPSs at pH 5.0 for 3 h. In contrast, the adsorption capacities of the unmodified peanut shells (PSs), alkaline peanut shells (APSs) and crosslinked peanut shells (CPSs) were only 100.6, 180.3, and 173.0 mg/g, respectively, 4.3-, 2.4-, and 2.5-fold lower, respectively, than that of the modified shells. The desorption rate reached 89.9% with 1.5 mol/L NaCNS as an eluent, because the electrostatic attraction between the positive charges of the protein and the negative charges of the MPSs was reduced when the ionic strength was increasing. The MPSs were used to separate and purify cytochrome c from pig myocardium. A purification of 13.5-fold in a single step with a total enzyme activity recovery of 74.0% was achieved.展开更多
文摘A novel adsorbent based on peanut shells modified with glutaraldehyde and succinic anhydride was prepared. Factors affecting the adsorption capacity, such as the pH, temperature, adsorption time, initial cytochrome c (cyt c) concentration and NaCl ionic strength, were extensively investigated. The results showed that the maximum adsorption capacity of the modified peanut shells (MPSs) was 432.6 mg/g when 10 mL of cyt c solution was adsorbed by 20 mg of MPSs at pH 5.0 for 3 h. In contrast, the adsorption capacities of the unmodified peanut shells (PSs), alkaline peanut shells (APSs) and crosslinked peanut shells (CPSs) were only 100.6, 180.3, and 173.0 mg/g, respectively, 4.3-, 2.4-, and 2.5-fold lower, respectively, than that of the modified shells. The desorption rate reached 89.9% with 1.5 mol/L NaCNS as an eluent, because the electrostatic attraction between the positive charges of the protein and the negative charges of the MPSs was reduced when the ionic strength was increasing. The MPSs were used to separate and purify cytochrome c from pig myocardium. A purification of 13.5-fold in a single step with a total enzyme activity recovery of 74.0% was achieved.