期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-material Bio-inspired Soft Octopus Robot for Underwater Synchronous Swimming 被引量:3
1
作者 Faheem Ahmed Muhammad Waqas +6 位作者 bushra shaikh Umair Khan Afaque Manzoor Soomro Suresh Kumar Hina Ashraf Fida Hussain Memon Kyung Hyun Choi 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1229-1241,共13页
Inspired by the simple yet amazing morphology of the Octopus, we propose the design, fabrication, and characterization of multi-material bio-inspired soft Octopus robot (Octobot). 3D printed molds for tentacles and he... Inspired by the simple yet amazing morphology of the Octopus, we propose the design, fabrication, and characterization of multi-material bio-inspired soft Octopus robot (Octobot). 3D printed molds for tentacles and head were used. The tentacles of the Octobot were casted using Ecoflex-0030 while head was fabricated using relatively flexible material, i.e., OOMOO-25. The head is attached to the functionally responsive tentacles (each tentacle is of 79.12 mm length and 7 void space diameter), whereas Shape Memory Alloy (SMA) muscle wires of 0.5 mm thickness are used in Octobot tentacles for dual thrust generation and actuation of Octobot. The tentacles were separated in two groups and were synchronously actuated. Each tentacle of the developed Octobot contains a pair of SMA muscles (SMA-α and SMA-β). SMA-α muscles being the main actuator, was powered by 9 V, 350 mA power supply, whereas SMA-β was used to provide back thrust and thus helps to increase the actuation frequency. Simulation work of the proposed model was performed in the SolidWorks environment to verify the vertical velocity using the octopus tentacle actuation. The design morphology of Octobot was optimized using simulation and TRACKER software by analyzing the experimental data of angle, displacement, and velocity of real octopus. The as-developed Octobot can swim at variable frequencies (0.5–2 Hz) with the average speed of 25 mm/s (0.5 BLS). Therefore, the proposed soft Octopus robot showed an excellent capability of mimicking the gait pattern of its natural counterpart. 展开更多
关键词 BIO-INSPIRED OCTOPUS Octobot Sub-surface Soft robotics SWIMMING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部