The standard finite elements of degree p over the rectangular meshes are applied to solve a kind of nonlinear viscoelastic wave equations with nonlinear boundary conditions, and the superclose property of the continuo...The standard finite elements of degree p over the rectangular meshes are applied to solve a kind of nonlinear viscoelastic wave equations with nonlinear boundary conditions, and the superclose property of the continuous Galerkin approximation is derived without using the nonclassical elliptic projection of the exact solution of the model problem. The global superconvergence of one order higher than the traditional error estimate is also obtained through the postprocessing technique.展开更多
A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz...A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz projection technique,where ‖·‖_h is a norm over the finite element space.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.10671184 and 10971203
文摘The standard finite elements of degree p over the rectangular meshes are applied to solve a kind of nonlinear viscoelastic wave equations with nonlinear boundary conditions, and the superclose property of the continuous Galerkin approximation is derived without using the nonclassical elliptic projection of the exact solution of the model problem. The global superconvergence of one order higher than the traditional error estimate is also obtained through the postprocessing technique.
基金supported by the Natural Science Foundation of China under Grant Nos.10671184 and 10971203
文摘A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz projection technique,where ‖·‖_h is a norm over the finite element space.