期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Transient Search Optimization with Machine Learning Based Behavior Recognition on Body Sensor Data
1
作者 Baraa Wasfi Salim bzar khidir hussan +1 位作者 Zainab Salih Ageed Subhi R.M.Zeebaree 《Computers, Materials & Continua》 SCIE EI 2023年第5期4593-4609,共17页
Recently,human healthcare from body sensor data has gained considerable interest from a wide variety of human-computer communication and pattern analysis research owing to their real-time applications namely smart hea... Recently,human healthcare from body sensor data has gained considerable interest from a wide variety of human-computer communication and pattern analysis research owing to their real-time applications namely smart healthcare systems.Even though there are various forms of utilizing distributed sensors to monitor the behavior of people and vital signs,physical human action recognition(HAR)through body sensors gives useful information about the lifestyle and functionality of an individual.This article concentrates on the design of an Improved Transient Search Optimization with Machine Learning based BehaviorRecognition(ITSOMLBR)technique using body sensor data.The presented ITSOML-BR technique collects data from different body sensors namely electrocardiography(ECG),accelerometer,and magnetometer.In addition,the ITSOML-BR technique extract features like variance,mean,skewness,and standard deviation.Moreover,the presented ITSOML-BR technique executes a micro neural network(MNN)which can be employed for long term healthcare monitoring and classification.Furthermore,the parameters related to the MNN model are optimally selected via the ITSO algorithm.The experimental result analysis of the ITSOML-BR technique is tested on the MHEALTH dataset.The comprehensive comparison study reported a higher result for the ITSOMLBR approach over other existing approaches with maximum accuracy of 99.60%. 展开更多
关键词 Behavior recognition transient search optimization machine learning healthcare SENSORS wearables
下载PDF
Automated Colonic Polyp Detection and Classification Enabled Northern Goshawk Optimization with Deep Learning
2
作者 Mohammed Jasim Mohammed Jasim bzar khidir hussan +1 位作者 Subhi R.M.Zeebaree Zainab Salih Ageed 《Computers, Materials & Continua》 SCIE EI 2023年第5期3677-3693,共17页
The major mortality factor relevant to the intestinal tract is the growth of tumorous cells(polyps)in various parts.More specifically,colonic polyps have a high rate and are recognized as a precursor of colon cancer g... The major mortality factor relevant to the intestinal tract is the growth of tumorous cells(polyps)in various parts.More specifically,colonic polyps have a high rate and are recognized as a precursor of colon cancer growth.Endoscopy is the conventional technique for detecting colon polyps,and considerable research has proved that automated diagnosis of image regions that might have polyps within the colon might be used to help experts for decreasing the polyp miss rate.The automated diagnosis of polyps in a computer-aided diagnosis(CAD)method is implemented using statistical analysis.Nowadays,Deep Learning,particularly throughConvolution Neural networks(CNN),is broadly employed to allowthe extraction of representative features.This manuscript devises a new Northern Goshawk Optimization with Transfer Learning Model for Colonic Polyp Detection and Classification(NGOTL-CPDC)model.The NGOTL-CPDC technique aims to investigate endoscopic images for automated colonic polyp detection.To accomplish this,the NGOTL-CPDC technique comprises of adaptive bilateral filtering(ABF)technique as a noise removal process and image pre-processing step.Besides,the NGOTL-CPDC model applies the Faster SqueezeNet model for feature extraction purposes in which the hyperparameter tuning process is performed using the NGO optimizer.Finally,the fuzzy Hopfield neural network(FHNN)method can be employed for colonic poly detection and classification.A widespread simulation analysis is carried out to ensure the improved outcomes of the NGOTL-CPDC model.The comparison study demonstrates the enhancements of the NGOTL-CPDC model on the colonic polyp classification process on medical test images. 展开更多
关键词 Biomedical imaging artificial intelligence colonic polyp classification medical image classification computer-aided diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部