We study topological phases of a non-Hermitian coupled Su-Schrieffer-Heeger(SSH) ladder. The model originates from the brick-wall lattices in the two-row limit. The Hamiltonian can be brought into block off-diagonal f...We study topological phases of a non-Hermitian coupled Su-Schrieffer-Heeger(SSH) ladder. The model originates from the brick-wall lattices in the two-row limit. The Hamiltonian can be brought into block off-diagonal form and the winding number can be defined with the determine of the block off-diagonal matrix. We find the determine of the offdiagonal matrix has nothing to do with the interleg hopping of the ladder. So the topological phases of the model are the same as those of the chains. Further numerical simulations verify the analysis.展开更多
The carbon diffusivity in tungsten is one fundamental and essential factor in the application of tungsten as plasmafacing materials for fusion reactors and substrates for diamond growth. However, data on this are quit...The carbon diffusivity in tungsten is one fundamental and essential factor in the application of tungsten as plasmafacing materials for fusion reactors and substrates for diamond growth. However, data on this are quite scarce and largely scattered. We perform a series of first-principles calculations to predict the diffusion parameters of carbon in tungsten,and evaluate the effect of temperature on them by introducing lattice expansion and phonon vibration. The carbon atom prefers to occupy octahedral interstitial site rather than tetrahedral interstitial site, and the minimum energy path for its diffusion goes through a tetrahedral site. The temperature has little effect on the pre-exponential factor but a marked effect on the activation energy, which linearly increases with the temperature. Our predicted results are well consistent with the experimental data obtained at high temperature(>1800 K) but significantly larger than the experimental results at low temperature(<1800 K).展开更多
The non-Hermitian skin effect breaks the conventional bulk–boundary correspondence and leads to non-Bloch topological invariants.Inspired by the fact that the topological protected zero modes are immune to perturbati...The non-Hermitian skin effect breaks the conventional bulk–boundary correspondence and leads to non-Bloch topological invariants.Inspired by the fact that the topological protected zero modes are immune to perturbations,we construct a partner of a non-Hermitian system by getting rid of the non-Hermitian skin effect.Through adjusting the imbalance hopping,we find that the existence of zero-energy boundary states still dictate the bulk topological invariants based on the band-theory framework.Two non-Hermitian Su–Schrieffer–Heeger(SSH)models are used to illuminate the ideas.Specially,we obtain the winding numbers in analytical form without the introduction of the generalized Brillouin zone.The work gives an alternative method to calculate the topological invariants of non-Hermitian systems.展开更多
基金Project supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.A2012203174 and A2015203387)the National Natural Science Foundation of China(Grant Nos.10974169 and 11304270)
文摘We study topological phases of a non-Hermitian coupled Su-Schrieffer-Heeger(SSH) ladder. The model originates from the brick-wall lattices in the two-row limit. The Hamiltonian can be brought into block off-diagonal form and the winding number can be defined with the determine of the block off-diagonal matrix. We find the determine of the offdiagonal matrix has nothing to do with the interleg hopping of the ladder. So the topological phases of the model are the same as those of the chains. Further numerical simulations verify the analysis.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFE0308102)the National Natural Science Foundation of China(Grant Nos.11735015 and 51771185)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.17KJB140008)Jinling Institute of Technology,China(Grant Nos.jit-fhxm-201601 and jit-b-201616)
文摘The carbon diffusivity in tungsten is one fundamental and essential factor in the application of tungsten as plasmafacing materials for fusion reactors and substrates for diamond growth. However, data on this are quite scarce and largely scattered. We perform a series of first-principles calculations to predict the diffusion parameters of carbon in tungsten,and evaluate the effect of temperature on them by introducing lattice expansion and phonon vibration. The carbon atom prefers to occupy octahedral interstitial site rather than tetrahedral interstitial site, and the minimum energy path for its diffusion goes through a tetrahedral site. The temperature has little effect on the pre-exponential factor but a marked effect on the activation energy, which linearly increases with the temperature. Our predicted results are well consistent with the experimental data obtained at high temperature(>1800 K) but significantly larger than the experimental results at low temperature(<1800 K).
基金Project supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.A2012203174 and A2015203387)the National Natural Science Foundation of China(Grant Nos.10974169 and 11304270)
文摘The non-Hermitian skin effect breaks the conventional bulk–boundary correspondence and leads to non-Bloch topological invariants.Inspired by the fact that the topological protected zero modes are immune to perturbations,we construct a partner of a non-Hermitian system by getting rid of the non-Hermitian skin effect.Through adjusting the imbalance hopping,we find that the existence of zero-energy boundary states still dictate the bulk topological invariants based on the band-theory framework.Two non-Hermitian Su–Schrieffer–Heeger(SSH)models are used to illuminate the ideas.Specially,we obtain the winding numbers in analytical form without the introduction of the generalized Brillouin zone.The work gives an alternative method to calculate the topological invariants of non-Hermitian systems.