The influence of water deficit as main cane yield limiting factor in Ivory Coast was investigated on SUCAF Ferke 2 and Sucrivoire Zuenoula sugarcane commercial plantations. A soil water balance model was used to asses...The influence of water deficit as main cane yield limiting factor in Ivory Coast was investigated on SUCAF Ferke 2 and Sucrivoire Zuenoula sugarcane commercial plantations. A soil water balance model was used to assess crop water uptake over two critical growth stages, namely stem elongation and yield formation, to be correlated with cane yields. Under simulated rainfed conditions, average yields performed on yearly basis (from 1991 to 1997) in both sites were highly dependent (linearly) on average crop water satisfaction ratio (ETa/ETm) over these critical growth stages. Under real field conditions in Ferke 2 (irrigation water being considered in addition to rainfall), cane yields of early as well as late maturing sugarcane varieties obtained on yearly basis were dependent on average crop water satisfaction ratio over both growth stages. In Zudnoula, cane yield fluctuations were generally not predicted by crop water satisfaction ratio, regardless the cropping season considered. However, average cane yields obtained from year to year over the study period in both sugarcane schemes were highly dependent on the average crop water uptake ratio. This shows the important contribution of water in predicting yearly variations of average cane yields produced on Ivorian sugarcane commercial plantations.展开更多
文摘The influence of water deficit as main cane yield limiting factor in Ivory Coast was investigated on SUCAF Ferke 2 and Sucrivoire Zuenoula sugarcane commercial plantations. A soil water balance model was used to assess crop water uptake over two critical growth stages, namely stem elongation and yield formation, to be correlated with cane yields. Under simulated rainfed conditions, average yields performed on yearly basis (from 1991 to 1997) in both sites were highly dependent (linearly) on average crop water satisfaction ratio (ETa/ETm) over these critical growth stages. Under real field conditions in Ferke 2 (irrigation water being considered in addition to rainfall), cane yields of early as well as late maturing sugarcane varieties obtained on yearly basis were dependent on average crop water satisfaction ratio over both growth stages. In Zudnoula, cane yield fluctuations were generally not predicted by crop water satisfaction ratio, regardless the cropping season considered. However, average cane yields obtained from year to year over the study period in both sugarcane schemes were highly dependent on the average crop water uptake ratio. This shows the important contribution of water in predicting yearly variations of average cane yields produced on Ivorian sugarcane commercial plantations.