Salicylic acid (SA) is a vital plant growth regulator providing promising role in plant development and adopts defense mechanism to abiotic stresses. Salinity is the most limiting abiotic factor for plant development ...Salicylic acid (SA) is a vital plant growth regulator providing promising role in plant development and adopts defense mechanism to abiotic stresses. Salinity is the most limiting abiotic factor for plant development and growth changes in watermelon by producing reactive oxygen species and ultimately oxidative stress. The present study was aimed to investigate the mechanism involved in salt stress alleviation in watermelon (Citrullus lanatus Thanb. Mavs.) through the foliar application of salicylic acid. Watermelon cv. Charleston Gray was grown under moderate saline regime of 3 ds·m-1 NaCl and sprayed with salicylic acid with four level (0.5, 1.0, 2.5 and 5.0 mmol/L) compared along with control. SA @ 5.0 mmol/L was found to be very effective in mitigation of salt stress. SA was found to be very effective in alleviation of salinity stress by produced antioxidants and acted as osmo-regulator.展开更多
For horticultural crops and especially for vegetables, salinity is dilemma. It is the most limiting factor for plant growth and development by producing reactive oxygen species and ultimately oxidative stress. In the ...For horticultural crops and especially for vegetables, salinity is dilemma. It is the most limiting factor for plant growth and development by producing reactive oxygen species and ultimately oxidative stress. In the present study, the screening of watermelon (Citrullus lanatus Thanb. Mavs.) Cultivars was observed for salt tolerance. Four salinity levels (1.5, 3, 4.5, and 6 dS·m-1 NaCl) and six cultivars (Crimson, Charleston Gray, Anarkali, Chairman, Sugar Baby and Champion) tested for screening. It was observed that all morphological attributes and ionic contents were severely affected. But it was revealed by statistical analysis that Charleston Gray was affected least while Champion was most salt sensitive cultivar due to oxidative stress and ionic toxicity. It is concluded that different genotypes under consideration vary in their ability to tolerate salt stress.展开更多
An effective and simple screening technique for identification of salt tolerant and salt sensitive radish genotypes was observed. Sand is used as potting media. Six genotypes of radish were used for screening against ...An effective and simple screening technique for identification of salt tolerant and salt sensitive radish genotypes was observed. Sand is used as potting media. Six genotypes of radish were used for screening against four salinity levels (0, 1, 3, 5 and 7 dS/m<sup>-1</sup>). Twenty days old seedlings of radish were salinized with salt solution (NaCl). Morphological, physiological and ionic parameters were studied. Radish genotypes Laal-Pari and 40 Days executed the best performance in all the measured attributes and categorized as salt tolerant genotype while Green Neck was the poorest in retaining normal functioning at higher salinity levels thus grouped under salt sensitive cultivar.展开更多
文摘Salicylic acid (SA) is a vital plant growth regulator providing promising role in plant development and adopts defense mechanism to abiotic stresses. Salinity is the most limiting abiotic factor for plant development and growth changes in watermelon by producing reactive oxygen species and ultimately oxidative stress. The present study was aimed to investigate the mechanism involved in salt stress alleviation in watermelon (Citrullus lanatus Thanb. Mavs.) through the foliar application of salicylic acid. Watermelon cv. Charleston Gray was grown under moderate saline regime of 3 ds·m-1 NaCl and sprayed with salicylic acid with four level (0.5, 1.0, 2.5 and 5.0 mmol/L) compared along with control. SA @ 5.0 mmol/L was found to be very effective in mitigation of salt stress. SA was found to be very effective in alleviation of salinity stress by produced antioxidants and acted as osmo-regulator.
文摘For horticultural crops and especially for vegetables, salinity is dilemma. It is the most limiting factor for plant growth and development by producing reactive oxygen species and ultimately oxidative stress. In the present study, the screening of watermelon (Citrullus lanatus Thanb. Mavs.) Cultivars was observed for salt tolerance. Four salinity levels (1.5, 3, 4.5, and 6 dS·m-1 NaCl) and six cultivars (Crimson, Charleston Gray, Anarkali, Chairman, Sugar Baby and Champion) tested for screening. It was observed that all morphological attributes and ionic contents were severely affected. But it was revealed by statistical analysis that Charleston Gray was affected least while Champion was most salt sensitive cultivar due to oxidative stress and ionic toxicity. It is concluded that different genotypes under consideration vary in their ability to tolerate salt stress.
文摘An effective and simple screening technique for identification of salt tolerant and salt sensitive radish genotypes was observed. Sand is used as potting media. Six genotypes of radish were used for screening against four salinity levels (0, 1, 3, 5 and 7 dS/m<sup>-1</sup>). Twenty days old seedlings of radish were salinized with salt solution (NaCl). Morphological, physiological and ionic parameters were studied. Radish genotypes Laal-Pari and 40 Days executed the best performance in all the measured attributes and categorized as salt tolerant genotype while Green Neck was the poorest in retaining normal functioning at higher salinity levels thus grouped under salt sensitive cultivar.