期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bremsstrahlung emission from high power laser interactions with constrained targets for industrial radiography
1
作者 c.d.armstrong C.M.Brenner +15 位作者 C.Jones D.R.Rusby Z.E.Davidson Y.Zhang J.Wragg S.Richards C.Spindloe P.Oliveira M.Notley R.Clarke S.R.Mirfayzi S.Kar Y.Li T.Scott P.McKenna D.Neely 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2019年第2期27-33,共7页
Laser-solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging.A bright,energetic X-ray pulse can be driven from a small source,making it ideal for high resolution X-... Laser-solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging.A bright,energetic X-ray pulse can be driven from a small source,making it ideal for high resolution X-ray radiography.By limiting the lateral dimensions of the target we are able to confine the region over which X-rays are produced,enabling imaging with enhanced resolution and contrast.Using constrained targets we demonstrate experimentally a(20±3)μm X-ray source,improving the image quality compared to unconstrained foil targets.Modelling demonstrates that a larger sheath field envelope around the perimeter of the constrained targets increases the proportion of electron current that recirculates through the target,driving a brighter source of X-rays. 展开更多
关键词 BREMSSTRAHLUNG high power laser NONDESTRUCTIVE imaging RADIOGRAPHY X-ray
原文传递
Effect of rear surface fields on hot, refluxing and escaping electron populations via numerical simulations
2
作者 D.R.Rusby c.d.armstrong +3 位作者 G.G.Scott M.King P.McKenna D.Neely 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2019年第3期76-86,共11页
After a population of laser-driven hot electrons traverses a limited thickness solid target,these electrons will encounter the rear surface,creating TV/m fields that heavily influence the subsequent hot-electron propa... After a population of laser-driven hot electrons traverses a limited thickness solid target,these electrons will encounter the rear surface,creating TV/m fields that heavily influence the subsequent hot-electron propagation.Electrons that fail to overcome the electrostatic potential reflux back into the target.Those electrons that do overcome the field will escape the target.Here,using the particle-in-cell(PIC)code EPOCH and particle tracking of a large population of macro-particles,we investigate the refluxing and escaping electron populations,as well as the magnitude,spatial and temporal evolution of the rear surface electrostatic fields.The temperature of both the escaping and refluxing electrons is reduced by 30%–50%when compared to the initial hot-electron temperature as a function of intensity between 1019 and 1021 W/cm^2.Using particle tracking we conclude that the highest energy internal hot electrons are guaranteed to escape up to a threshold energy,below which only a small fraction are able to escape the target.We also examine the temporal characteristic of energy changes of the refluxing and escaping electrons and show that the majority of the energy change is as a result of the temporally evolving electric field that forms on the rear surface. 展开更多
关键词 ELECTRON transport high power laser PARTICLE-IN-CELL simulations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部