Atmospheric reentry vehicles and planetary probes fly through the atmosphere at hypervelocity speed. At such speed, there is a significant proportion of heat load to the vehicle surface due to radiative heating. Accur...Atmospheric reentry vehicles and planetary probes fly through the atmosphere at hypervelocity speed. At such speed, there is a significant proportion of heat load to the vehicle surface due to radiative heating. Accurate prediction needs a good knowledge of the radiation spectrum properties. In this paper, a high-speed camera and spectrograph coupled to an intensified charge-coupled device have bee n impleme nted to inv estigate the rad i at io n flow over a semi-cylinder model. The experiments were carried out in the JF16 expansi on timnel with secondary shock velocity of 7.9 km·s^-1. Results show that the emissio n spectrum comprises several atomic lines and molecular band systems. We give detailed data of the radiation spectrum, shock shape, shock detached distance and radiation intensity varying with space and wavelength. This valuable experimental dataset will be helpful to validate computational fluid dynamics codes and radiation models, which equates to increased prediction accuracy of radiation heating. Also, some suggestions for spectral measurement in hypervelocity flow field were list in the end.展开更多
基金the National NaturalScience Foundation of China (Grants 11602275. 11672308, 11672312.and 11532014.).
文摘Atmospheric reentry vehicles and planetary probes fly through the atmosphere at hypervelocity speed. At such speed, there is a significant proportion of heat load to the vehicle surface due to radiative heating. Accurate prediction needs a good knowledge of the radiation spectrum properties. In this paper, a high-speed camera and spectrograph coupled to an intensified charge-coupled device have bee n impleme nted to inv estigate the rad i at io n flow over a semi-cylinder model. The experiments were carried out in the JF16 expansi on timnel with secondary shock velocity of 7.9 km·s^-1. Results show that the emissio n spectrum comprises several atomic lines and molecular band systems. We give detailed data of the radiation spectrum, shock shape, shock detached distance and radiation intensity varying with space and wavelength. This valuable experimental dataset will be helpful to validate computational fluid dynamics codes and radiation models, which equates to increased prediction accuracy of radiation heating. Also, some suggestions for spectral measurement in hypervelocity flow field were list in the end.