Environment friendly ferroelectric relaxor Ba(Zr_(0.2)Ti_(0.8))O_(3)thin fims with the addition of 2%Mn dopant were grown on(001)MgO substrates by pulsed laser deposition.Microstructure studies with X-ray di®ract...Environment friendly ferroelectric relaxor Ba(Zr_(0.2)Ti_(0.8))O_(3)thin fims with the addition of 2%Mn dopant were grown on(001)MgO substrates by pulsed laser deposition.Microstructure studies with X-ray di®raction and transmission electron microscopy reveal that the as-grown Ba(Zr_(0.2)Ti_(0.8))O_(3) thin films are c-axis oriented with an atomic sharp interface.The films have good single crystallinity and good epitaxial quality.The interface relationship was determined to be[100]Mn.BZT//[100]MgO and(001)Mn.BZT//(001)MgO.Nanoscale order/disorder relaxor structures were found with nano-columnar structures.The microwave dielectric measurements(15-18GHz)indicate that the¯lms have excellent dielectric properties with large dielectric constant value,high tunability,and low dielectric loss,promising the development of room temperature tunable microwave elements.展开更多
基金supported by the National Science Foundation under NSF-NIRT-0709293 and NSF-DMR-0934218the State of Texas through the ARP Program under 003656-0103-2007the Texas Center for Superconductivity at the University of Houston.
文摘Environment friendly ferroelectric relaxor Ba(Zr_(0.2)Ti_(0.8))O_(3)thin fims with the addition of 2%Mn dopant were grown on(001)MgO substrates by pulsed laser deposition.Microstructure studies with X-ray di®raction and transmission electron microscopy reveal that the as-grown Ba(Zr_(0.2)Ti_(0.8))O_(3) thin films are c-axis oriented with an atomic sharp interface.The films have good single crystallinity and good epitaxial quality.The interface relationship was determined to be[100]Mn.BZT//[100]MgO and(001)Mn.BZT//(001)MgO.Nanoscale order/disorder relaxor structures were found with nano-columnar structures.The microwave dielectric measurements(15-18GHz)indicate that the¯lms have excellent dielectric properties with large dielectric constant value,high tunability,and low dielectric loss,promising the development of room temperature tunable microwave elements.