期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Pseudocapacitive Charge Storage in Thin Nanobelts 被引量:1
1
作者 Ria Kunwar Midhun Harilal +7 位作者 Syam G.Krishnan Bhupender Pal Izan Izwan Misnon c.r.mariappan Fabian I.Ezema Hendry Izaac Elim Chun-Chen Yang Rajan Jose 《Advanced Fiber Materials》 CAS 2019年第3期205-213,共9页
This article reports that extremely thin nanobelts(thickness~10 nm)exhibit pseudocapacitive(PC)charge storage in the asymmetric supercapacitor(ASC)configuration,while show battery-type charge storage in their single e... This article reports that extremely thin nanobelts(thickness~10 nm)exhibit pseudocapacitive(PC)charge storage in the asymmetric supercapacitor(ASC)configuration,while show battery-type charge storage in their single electrodes.Two types of nanobelts,viz.NiO-Co_(3)O_(4) hybrid and spinal-type NiCo_(2)O_(4),developed by electrospinning technique are used in this work.The charge storage behaviour of the nanobelts is benchmarked against their binary metal oxide nanowires,i.e.,NiO and Co_(3)O_(4),as well as a hybrid of similar chemistry,CuO-Co_(3)O_(4).The nanobelts have thickness of~10 nm and width~200 nm,whereas the nanowires have diameter of~100 nm.Clear differences in charge storage behaviours are observed in NiO-Co_(3)O_(4) hybrid nanobelts based ASCs compared to those fabricated using the other materials-the former showed capacitive behav-iour whereas the others revealed battery-type discharge behaviour.Origin of pseudocapacitance in nanobelts based ASCs is shown to arise from their nanobelts morphology with thickness less than typical electron diffusion lengths(~20 nm).Among all the five type of devices fabricated,the NiO-Co_(3)O_(4) hybrid ASCs exhibited the highest specific energy,specific power and cycling stability. 展开更多
关键词 Battery-supercapacitor hybrid devices Energy storage materials Hybrid materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部