We propose a semi-analytical modeling of smoothed laser beam deviation induced by plasma flows.Based on a Gaussian description of speckles,the model includes spatial,temporal,and polarization smoothing techniques,thro...We propose a semi-analytical modeling of smoothed laser beam deviation induced by plasma flows.Based on a Gaussian description of speckles,the model includes spatial,temporal,and polarization smoothing techniques,through fits coming from hydrodynamic simulations with a paraxial description of electromagnetic waves.This beam bending model is then incorporated into a ray tracing algorithm and carefully validated.When applied as a post-process to the propagation of the inner cone in a full-scale simulation of a National Ignition Facility(NIF)experiment,the beam bending along the path of the laser affects the refraction conditions inside the hohlraum and the energy deposition,and could explain some anomalous refraction measurements,namely,the so-called glint observed in some NIF experiments.展开更多
文摘We propose a semi-analytical modeling of smoothed laser beam deviation induced by plasma flows.Based on a Gaussian description of speckles,the model includes spatial,temporal,and polarization smoothing techniques,through fits coming from hydrodynamic simulations with a paraxial description of electromagnetic waves.This beam bending model is then incorporated into a ray tracing algorithm and carefully validated.When applied as a post-process to the propagation of the inner cone in a full-scale simulation of a National Ignition Facility(NIF)experiment,the beam bending along the path of the laser affects the refraction conditions inside the hohlraum and the energy deposition,and could explain some anomalous refraction measurements,namely,the so-called glint observed in some NIF experiments.