期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
横波在各向异性介质中传播的实验室观测
1
作者 C.H.Sondergeld c.s.rai 周延坤 《石油物探译丛》 1992年第4期10-18,共9页
近几年来,由于掌握了横波速度各向异性的识别和恰当的处理方法,所以横波勘探又得到振兴。我们所指的地下各向异性是指方位各向异性.为了简单起见,地下各向异性被认为是具有六方系对称或具唯一水平轴的横向各向同性。但是,在我们着手解... 近几年来,由于掌握了横波速度各向异性的识别和恰当的处理方法,所以横波勘探又得到振兴。我们所指的地下各向异性是指方位各向异性.为了简单起见,地下各向异性被认为是具有六方系对称或具唯一水平轴的横向各向同性。但是,在我们着手解释横波野外数据之前,必须提供(作为输入)合适的横波数据.为了做到这一点,就必须承认R.M.Alford1986年提出的旋转变换的有效性.我们做了一系列实验室实验,清楚地证实了Alford算法在物理和数学旋转之间的等效性。而且,通过这些研究。 展开更多
关键词 横波 各向异性 旋转变换 介质
下载PDF
Feature selection for face recognition:a memetic algorithmic approach 被引量:2
2
作者 Dinesh KUMAR Shakti KUMAR c.s.rai 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第8期1140-1152,共13页
The eigenface method that uses principal component analysis(PCA) has been the standard and popular method used in face recognition.This paper presents a PCA-memetic algorithm(PCA-MA) approach for feature selection.PCA... The eigenface method that uses principal component analysis(PCA) has been the standard and popular method used in face recognition.This paper presents a PCA-memetic algorithm(PCA-MA) approach for feature selection.PCA has been extended by MAs where the former was used for feature extraction/dimensionality reduction and the latter exploited for feature selection.Simulations were performed over ORL and YaleB face databases using Euclidean norm as the classifier.It was found that as far as the recognition rate is concerned,PCA-MA completely outperforms the eigenface method.We compared the performance of PCA extended with genetic algorithm(PCA-GA) with our proposed PCA-MA method.The results also clearly established the supremacy of the PCA-MA method over the PCA-GA method.We further extended linear discriminant analysis(LDA) and kernel principal component analysis(KPCA) approaches with the MA and observed significant improvement in recognition rate with fewer features.This paper also compares the performance of PCA-MA,LDA-MA and KPCA-MA approaches. 展开更多
关键词 Face recognition Memetic algorithm (MA) Principal component analysis (PCA) Linear discriminant analysis (LDA) Kernel principal component analysis (KPCA) Feature selection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部