To improve corrosion and wear resistances of the Zirconium(Zr) based alloys which are widely applied in nuclear reactors and chemical corrosion-resistant equipment, a new surface modification scheme was designed to de...To improve corrosion and wear resistances of the Zirconium(Zr) based alloys which are widely applied in nuclear reactors and chemical corrosion-resistant equipment, a new surface modification scheme was designed to deposit a Zr75Cu25 coating on Zr substrate by using magnetron sputtering technique. The microstructure and the phase composition were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffraction measurements. The tribological properties and the corrosion resistance were investigated by performing reciprocating tribo-tester and electrochemical tests, respectively.It is found that the Zr75Cu25 coating is made up of a mixture of amorphous and a-(Zr) nanocrystalline phases.The nanocrystalline particles with a size of 5-10 nm are homogenously dispersed in the amorphous matrix.The Zr75Cu25 coating shows excellent tribological properties, due to the dispersion strengthen caused by the homogeneous distribution of a-(Zr) nano-size particles among the amorphous matrix. In addition, it is revealed that the Zr75Cu25 coating makes the Zr substrate exhibit excellent corrosion resistance, due to the robust passive film with a compact structure of the amorphous/nanocrystalline mixture.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51471088 and U1332112)the Fundamental Research Funds for the Central Universities(No.NE2015004)the Project of the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions
文摘To improve corrosion and wear resistances of the Zirconium(Zr) based alloys which are widely applied in nuclear reactors and chemical corrosion-resistant equipment, a new surface modification scheme was designed to deposit a Zr75Cu25 coating on Zr substrate by using magnetron sputtering technique. The microstructure and the phase composition were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffraction measurements. The tribological properties and the corrosion resistance were investigated by performing reciprocating tribo-tester and electrochemical tests, respectively.It is found that the Zr75Cu25 coating is made up of a mixture of amorphous and a-(Zr) nanocrystalline phases.The nanocrystalline particles with a size of 5-10 nm are homogenously dispersed in the amorphous matrix.The Zr75Cu25 coating shows excellent tribological properties, due to the dispersion strengthen caused by the homogeneous distribution of a-(Zr) nano-size particles among the amorphous matrix. In addition, it is revealed that the Zr75Cu25 coating makes the Zr substrate exhibit excellent corrosion resistance, due to the robust passive film with a compact structure of the amorphous/nanocrystalline mixture.