Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the...Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.展开更多
Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) a...Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.展开更多
基金The key technology R&D program of China, No.2007BAC29B02Project of Jiangsu Key Laboratory of Meteorological Disaster, No.KLME060101
文摘Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.
基金Supported by the National (Key) Basic ResearchDevelopment(973)Program of China(2011CB403406)+3 种基金National Natural Science Foundation of China(91544230 and 41105056)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionspartly supported by the State Scholarship Fund(201308320043)supported by the Research Innovation Program for College Graduates of Jiangsu Province(CXLX13-475)
文摘Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.