Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great ...Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great potential for HSI feature extraction,was proposed.Although this new type of GF possibly better explores the frequency characteristics of HSIs,with a new parameter added,it generates a much larger amount of features,yielding redundancies and noises,and is therefore risky to severely deteriorate the efficiency and accuracy of classification.To tackle this problem,we fully exploit phase-induced Gabor features efficiently,proposing an efficient phase-induced Gabor cube selection and weighted fusion(EPCS-WF)method for HSI classification.Specifically,to eliminate the redundancies and noises,we first select the most representative Gabor cubes using a newly designed energy-based phase-induced Gabor cube selection(EPCS)algorithm before feeding them into classifiers.Then,a weighted fusion(WF)strategy is adopted to integrate the mutual information residing in different feature cubes to generate the final predictions.Our experimental results obtained on four well-known HSI datasets demonstrate that the EPCS-WF method,while only adopting four selected Gabor cubes for classification,delivers better performance as compared with other Gabor-based methods.The code of this work is available at https://github.com/cairlin5/EPCS-WF-hyperspectral-image-classification for the sake of reproducibility.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 61771496, 42030111, and 61976234)partially supported by the National Program on Key Research Projects of China (Grant No. 2017YFC1502706)
文摘Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great potential for HSI feature extraction,was proposed.Although this new type of GF possibly better explores the frequency characteristics of HSIs,with a new parameter added,it generates a much larger amount of features,yielding redundancies and noises,and is therefore risky to severely deteriorate the efficiency and accuracy of classification.To tackle this problem,we fully exploit phase-induced Gabor features efficiently,proposing an efficient phase-induced Gabor cube selection and weighted fusion(EPCS-WF)method for HSI classification.Specifically,to eliminate the redundancies and noises,we first select the most representative Gabor cubes using a newly designed energy-based phase-induced Gabor cube selection(EPCS)algorithm before feeding them into classifiers.Then,a weighted fusion(WF)strategy is adopted to integrate the mutual information residing in different feature cubes to generate the final predictions.Our experimental results obtained on four well-known HSI datasets demonstrate that the EPCS-WF method,while only adopting four selected Gabor cubes for classification,delivers better performance as compared with other Gabor-based methods.The code of this work is available at https://github.com/cairlin5/EPCS-WF-hyperspectral-image-classification for the sake of reproducibility.