To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxi...To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, soluble protein content, and chlorophyll content) of Typha orientalis exposed to different concentrations of AgNPs solutions (0, 0.1, 1, 20 and 40 mg/L) were explored. Meantime, the accumulation of silver content in these plants was revealed. The results show that under low concentrations of AgNPs, the SOD and POD activities in the leaves of Typha orientalis are strengthened to different degrees. However, high concentrations of AgNPs inhibit the activities of SOD and POD. Under the stress of different concentrations of AgNPs, the CAT activities are inhibited initially and later recovered to some extent. Under the stress of low concentrations of AgNPs, the soluble protein content in the leaves of Typha orientalis increases significantly, but decreases more significantly with increasing concentrations of AgNPs. Low concentrations of AgNPs promote chlorophyll synthesis in the leaves of Typha orientalis , but the chlorophyll content subsequently falls to pre-stress levels. In contrast, high concentrations of AgNPs cause a certain inhibition to generate chlorophyll. Meanwhile, the results show that the silver concentrations of plant tissues increase with the exposure of concentrations of AgNPs and they have a positive relationship with the exposure of concentrations of AgNPs.展开更多
The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were ...The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were investigated.The results show that AgNPs concentrations in the water phase declined with the increase in time,and the reduction degree was dependent on the initial concentrations of AgNPs.The silver concentrations in the roots(r=0.98,p<0.05),stems and leaves(r=1,p<0.001)were significantly positively correlated with the initial concentrations of AgNPs.Silver nanoparticles accumulated in plant roots more than stems and leaves.Compared with the addition of AgNO 3 at identical concentrations,lower removal rates of silver and plant uptake were observed in the AgNPs stress systems.A significant positive correlation was also found between the initial AgNPs concentrations and the removed amount of silver(r=0.99,p<0.001).For AgNPs,the primary removal mechanisms in these aquatic systems were agglomeration and sedimentation,while the absorption by plants had a relatively weak contribution.展开更多
With sulfonated electrospun polystyrene fiber as a template, uniform polyaniline(PANI) nanotubes were fabricated via polymerization of aniline followed by template removal. Au nanoparticles(Aunano) were decorated ...With sulfonated electrospun polystyrene fiber as a template, uniform polyaniline(PANI) nanotubes were fabricated via polymerization of aniline followed by template removal. Au nanoparticles(Aunano) were decorated on the PANI nanotube successfully via auto-reduction of HAuCl4 on the PANI nanotube. The morphology of the nanotubes was characterized by means of scanning electron microscopy(SEM) and transmittance electron microscopy(TEM). By varying precursor concentration and incubation time, Aunano-PANI with different size of Aunano was obtained conveniently. Glassy carbon electrode modified with the Aunano decorated PANI nanotubes (Auna,o-PANI/GCE) was prepared and used seccessfully for the catalytic oxidation of ascorbic acid(AA). The results of differential pulse voltammetry indicate that there is a good linear relationship between the peak currents and the concentrations of AA in the range of 5-3000 μmol/L, with the limit of detection of 1 μmol/L(S/N〉3). There is no mutual interference between AA and dopamine. The electrode has been successfully applied in the detection of AA in vitamin C tablet sample.展开更多
基金The National Natural Science Foundation of China(No.51479034,5151101102)
文摘To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, soluble protein content, and chlorophyll content) of Typha orientalis exposed to different concentrations of AgNPs solutions (0, 0.1, 1, 20 and 40 mg/L) were explored. Meantime, the accumulation of silver content in these plants was revealed. The results show that under low concentrations of AgNPs, the SOD and POD activities in the leaves of Typha orientalis are strengthened to different degrees. However, high concentrations of AgNPs inhibit the activities of SOD and POD. Under the stress of different concentrations of AgNPs, the CAT activities are inhibited initially and later recovered to some extent. Under the stress of low concentrations of AgNPs, the soluble protein content in the leaves of Typha orientalis increases significantly, but decreases more significantly with increasing concentrations of AgNPs. Low concentrations of AgNPs promote chlorophyll synthesis in the leaves of Typha orientalis , but the chlorophyll content subsequently falls to pre-stress levels. In contrast, high concentrations of AgNPs cause a certain inhibition to generate chlorophyll. Meanwhile, the results show that the silver concentrations of plant tissues increase with the exposure of concentrations of AgNPs and they have a positive relationship with the exposure of concentrations of AgNPs.
基金The National Natural Science Foundation of China(No.51479034,5151101102)Fundamental Research Funds for the Central Universities(No.2242016R30008)
文摘The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were investigated.The results show that AgNPs concentrations in the water phase declined with the increase in time,and the reduction degree was dependent on the initial concentrations of AgNPs.The silver concentrations in the roots(r=0.98,p<0.05),stems and leaves(r=1,p<0.001)were significantly positively correlated with the initial concentrations of AgNPs.Silver nanoparticles accumulated in plant roots more than stems and leaves.Compared with the addition of AgNO 3 at identical concentrations,lower removal rates of silver and plant uptake were observed in the AgNPs stress systems.A significant positive correlation was also found between the initial AgNPs concentrations and the removed amount of silver(r=0.99,p<0.001).For AgNPs,the primary removal mechanisms in these aquatic systems were agglomeration and sedimentation,while the absorption by plants had a relatively weak contribution.
基金Supported by the National Natural Science Foundation of China(Nos.21105009, 21476047) and the Project of the State Key Laboratory of Electroanalytical Chemistry, China(No.SKLEAC201205).
文摘With sulfonated electrospun polystyrene fiber as a template, uniform polyaniline(PANI) nanotubes were fabricated via polymerization of aniline followed by template removal. Au nanoparticles(Aunano) were decorated on the PANI nanotube successfully via auto-reduction of HAuCl4 on the PANI nanotube. The morphology of the nanotubes was characterized by means of scanning electron microscopy(SEM) and transmittance electron microscopy(TEM). By varying precursor concentration and incubation time, Aunano-PANI with different size of Aunano was obtained conveniently. Glassy carbon electrode modified with the Aunano decorated PANI nanotubes (Auna,o-PANI/GCE) was prepared and used seccessfully for the catalytic oxidation of ascorbic acid(AA). The results of differential pulse voltammetry indicate that there is a good linear relationship between the peak currents and the concentrations of AA in the range of 5-3000 μmol/L, with the limit of detection of 1 μmol/L(S/N〉3). There is no mutual interference between AA and dopamine. The electrode has been successfully applied in the detection of AA in vitamin C tablet sample.