为了解耦冷热电联供(combined cool,heat and power system,CCHP)机组“以热定电”的运行约束,提高风电消纳能力,降低社会碳排放,提出了计及含氢储能与电价型需求响应的能量枢纽日前经济调度模型。源侧利用冷、热、电、氢4种储能装置,打...为了解耦冷热电联供(combined cool,heat and power system,CCHP)机组“以热定电”的运行约束,提高风电消纳能力,降低社会碳排放,提出了计及含氢储能与电价型需求响应的能量枢纽日前经济调度模型。源侧利用冷、热、电、氢4种储能装置,打破CCHP机组热电耦合约束;荷侧引入电价型需求响应改变用户用电行为,通过优化各机组出力与电负荷曲线,增加风机出力。该模型以系统日运行成本最低为目标,引入弃风惩罚成本增加风电消纳,综合功率平衡等约束,调用Gurobi求解器进行优化求解。对不同场景下能量枢纽的优化结果进行分析,并计算燃油汽车的碳排放量以量化氢燃料电池汽车节约的社会碳排放。结果表明:在电价型需求响应策略下,考虑CCHP与含氢储能的能量枢纽系统在增加风电消纳能力的同时降低了系统的日运行总成本,减少了社会碳排放。展开更多
Integrated River Basin Management(IRBM)has been a long discussed way to sustainably manage water and land resources;yet,very few examples of effective IRBM are found because there is a lack of sufficient scientific su...Integrated River Basin Management(IRBM)has been a long discussed way to sustainably manage water and land resources;yet,very few examples of effective IRBM are found because there is a lack of sufficient scientific support,as well as institutional accommodation,to successfully implement it.This paper overviews the major challenges with IRBM,the promising scientific approaches for the implementation of IRBM,and the areas of needed research,with considerable issues and experiences from China.It is expected that novel research will draw together disparate disciplines into an integrated scientific framework,upon which better modeling tools,stakeholder involvement,and decision-making support can be built.Cutting-edge new technologies will bring ideas of IRBM forward to theory and finally to practice.The paper will prompt scientists to undertake research to fill in the gaps in the current IRBM knowledge base and provide practitioners guidance on how to incorporate scientifically based information within the IRBM decision process.展开更多
文摘为了解耦冷热电联供(combined cool,heat and power system,CCHP)机组“以热定电”的运行约束,提高风电消纳能力,降低社会碳排放,提出了计及含氢储能与电价型需求响应的能量枢纽日前经济调度模型。源侧利用冷、热、电、氢4种储能装置,打破CCHP机组热电耦合约束;荷侧引入电价型需求响应改变用户用电行为,通过优化各机组出力与电负荷曲线,增加风机出力。该模型以系统日运行成本最低为目标,引入弃风惩罚成本增加风电消纳,综合功率平衡等约束,调用Gurobi求解器进行优化求解。对不同场景下能量枢纽的优化结果进行分析,并计算燃油汽车的碳排放量以量化氢燃料电池汽车节约的社会碳排放。结果表明:在电价型需求响应策略下,考虑CCHP与含氢储能的能量枢纽系统在增加风电消纳能力的同时降低了系统的日运行总成本,减少了社会碳排放。
基金supported by U.S.National Science Foundation(Grant No.CBET-0747276)
文摘Integrated River Basin Management(IRBM)has been a long discussed way to sustainably manage water and land resources;yet,very few examples of effective IRBM are found because there is a lack of sufficient scientific support,as well as institutional accommodation,to successfully implement it.This paper overviews the major challenges with IRBM,the promising scientific approaches for the implementation of IRBM,and the areas of needed research,with considerable issues and experiences from China.It is expected that novel research will draw together disparate disciplines into an integrated scientific framework,upon which better modeling tools,stakeholder involvement,and decision-making support can be built.Cutting-edge new technologies will bring ideas of IRBM forward to theory and finally to practice.The paper will prompt scientists to undertake research to fill in the gaps in the current IRBM knowledge base and provide practitioners guidance on how to incorporate scientifically based information within the IRBM decision process.