期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Feature Selection for Classificatory Analysis Based on Information-theoretic Criteria 被引量:3
1
作者 HUANG Jin-Jie LV Ning +1 位作者 LI Shuang-Quan cai yun-ze 《自动化学报》 EI CSCD 北大核心 2008年第3期383-392,共10页
由选择为类别的分析减少模式的维数的特征选择目的而不是无关或冗余的特征最增进知识。在这研究,为特征评价的二项新奇信息理论上的措施被介绍:一个人是一个改进公式估计在候选人特征 fi 和给选择特征 S 的子集的目标班 C 之间的有条... 由选择为类别的分析减少模式的维数的特征选择目的而不是无关或冗余的特征最增进知识。在这研究,为特征评价的二项新奇信息理论上的措施被介绍:一个人是一个改进公式估计在候选人特征 fi 和给选择特征 S 的子集的目标班 C 之间的有条件的相互的信息,即,我(C;fi|S ) ,在假设下面,特征的那个信息一致地被散布;其它是基于的一个相互的信息(MI ) 能捕获无关、冗余的输入的建设性的标准在特征的信息的任意的分布下面展示。与这二项措施,二个新特征选择算法,叫了二次的 基于MI 的特征选择( QMIFS )途径和 基于MI 的建设性的标准( MICC )途径分别地,被建议,在哪个在 Battiti 的 MIFS 相似的没有参数并且( Kwak 和 Choi )的 MIFS-U 方法需要是预设。因此,怎么选择适当价值为的难处理的问题完全被避免与已经选择的特征做在关联之间的折衷到目标班和冗余性。试验性的结果表明 QMIFS 和 MICC 的好表演在上合成并且基准数据集合。 展开更多
关键词 特征选择 信息理论标准 模式分类 数据挖掘
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部